Limits...
Physical and chemical mechanisms in oxide-based resistance random access memory.

Chang KC, Chang TC, Tsai TM, Zhang R, Hung YC, Syu YE, Chang YF, Chen MC, Chu TJ, Chen HL, Pan CH, Shih CC, Zheng JC, Sze SM - Nanoscale Res Lett (2015)

Bottom Line: Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device.The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process.Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.

ABSTRACT
In this review, we provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. Based on the investigation of physical and chemical mechanisms, we focus on its materials, device structures, and treatment methods so as to provide an in-depth perspective of state-of-the-art oxide-based RRAM. The critical voltage and constant reaction energy properties were found, which can be used to prospectively modulate voltage and operation time to control RRAM device working performance and forecast material composition. The quantized switching phenomena in RRAM devices were demonstrated at ultra-cryogenic temperature (4K), which is attributed to the atomic-level reaction in metallic filament. In the aspect of chemical mechanisms, we use the Coulomb Faraday theorem to investigate the chemical reaction equations of RRAM for the first time. We can clearly observe that the first-order reaction series is the basis for chemical reaction during reset process in the study. Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device. As for its materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide-doped metal technology to be introduced into the industry. Based on that, double-ended graphene oxide-doped silicon oxide based via-structure RRAM with filament self-aligning formation, and self-current limiting operation ability is demonstrated. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

No MeSH data available.


I-Vcurve and bipolar curves of Pt/Zn:SiO2/TiN, Pt/Ni:SiO2/TiN, and Pt/Sn:SiO2/TiN devices. (a) Current–voltage (I-V) curve of the Pt/SiO2/TiN sandwich device at room temperature without resistive switching characteristic. Bipolar resistance switching I-V curves of (b) the Pt/Zn:SiO2/TiN device with forming-free property, (c) the Pt/Ni:SiO2/TiN device, and (d) the Pt/Sn:SiO2/TiN device.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4388104&req=5

Fig15: I-Vcurve and bipolar curves of Pt/Zn:SiO2/TiN, Pt/Ni:SiO2/TiN, and Pt/Sn:SiO2/TiN devices. (a) Current–voltage (I-V) curve of the Pt/SiO2/TiN sandwich device at room temperature without resistive switching characteristic. Bipolar resistance switching I-V curves of (b) the Pt/Zn:SiO2/TiN device with forming-free property, (c) the Pt/Ni:SiO2/TiN device, and (d) the Pt/Sn:SiO2/TiN device.

Mentions: Figure 15a shows the current-voltage (I-V) properties of the control sample with the Pt/SiO2/TiN sandwich structure. The sputtered SiO2 layer exhibits no reliable RRAM properties even though the applied voltage is biased to a maximum voltage of 15 V. Figure 15b shows bipolar resistance switching characteristics of the Zn:SiO2 RRAM device by the DC voltage sweep operations. In particular, the device exhibits resistive switching behavior without forming process. For the Ni:SiO2 RRAM devices, the forming process is required to activate the as-deposited samples using DC voltage sweeping with a compliance current. A sudden increase in current occurs at a forming voltage, and the cell was transformed from the initial-resistance state (IRS) to the low-resistance state (LRS). In the Ni:SiO2 RRAM device, the resistance ratio of the HRS and the LRS is about 103 times at a reading voltage of 0.1 V, and there is no degradation after continuous I-V sweep operations as shown in Figure 15c. In the Sn:SiOx RRAM device, the resistance ratio of HRS and LRS is about 102 times at a reading voltage of 0.1 V, which is shown in Figure 15d.Figure 15


Physical and chemical mechanisms in oxide-based resistance random access memory.

Chang KC, Chang TC, Tsai TM, Zhang R, Hung YC, Syu YE, Chang YF, Chen MC, Chu TJ, Chen HL, Pan CH, Shih CC, Zheng JC, Sze SM - Nanoscale Res Lett (2015)

I-Vcurve and bipolar curves of Pt/Zn:SiO2/TiN, Pt/Ni:SiO2/TiN, and Pt/Sn:SiO2/TiN devices. (a) Current–voltage (I-V) curve of the Pt/SiO2/TiN sandwich device at room temperature without resistive switching characteristic. Bipolar resistance switching I-V curves of (b) the Pt/Zn:SiO2/TiN device with forming-free property, (c) the Pt/Ni:SiO2/TiN device, and (d) the Pt/Sn:SiO2/TiN device.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4388104&req=5

Fig15: I-Vcurve and bipolar curves of Pt/Zn:SiO2/TiN, Pt/Ni:SiO2/TiN, and Pt/Sn:SiO2/TiN devices. (a) Current–voltage (I-V) curve of the Pt/SiO2/TiN sandwich device at room temperature without resistive switching characteristic. Bipolar resistance switching I-V curves of (b) the Pt/Zn:SiO2/TiN device with forming-free property, (c) the Pt/Ni:SiO2/TiN device, and (d) the Pt/Sn:SiO2/TiN device.
Mentions: Figure 15a shows the current-voltage (I-V) properties of the control sample with the Pt/SiO2/TiN sandwich structure. The sputtered SiO2 layer exhibits no reliable RRAM properties even though the applied voltage is biased to a maximum voltage of 15 V. Figure 15b shows bipolar resistance switching characteristics of the Zn:SiO2 RRAM device by the DC voltage sweep operations. In particular, the device exhibits resistive switching behavior without forming process. For the Ni:SiO2 RRAM devices, the forming process is required to activate the as-deposited samples using DC voltage sweeping with a compliance current. A sudden increase in current occurs at a forming voltage, and the cell was transformed from the initial-resistance state (IRS) to the low-resistance state (LRS). In the Ni:SiO2 RRAM device, the resistance ratio of the HRS and the LRS is about 103 times at a reading voltage of 0.1 V, and there is no degradation after continuous I-V sweep operations as shown in Figure 15c. In the Sn:SiOx RRAM device, the resistance ratio of HRS and LRS is about 102 times at a reading voltage of 0.1 V, which is shown in Figure 15d.Figure 15

Bottom Line: Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device.The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process.Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.

ABSTRACT
In this review, we provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. Based on the investigation of physical and chemical mechanisms, we focus on its materials, device structures, and treatment methods so as to provide an in-depth perspective of state-of-the-art oxide-based RRAM. The critical voltage and constant reaction energy properties were found, which can be used to prospectively modulate voltage and operation time to control RRAM device working performance and forecast material composition. The quantized switching phenomena in RRAM devices were demonstrated at ultra-cryogenic temperature (4K), which is attributed to the atomic-level reaction in metallic filament. In the aspect of chemical mechanisms, we use the Coulomb Faraday theorem to investigate the chemical reaction equations of RRAM for the first time. We can clearly observe that the first-order reaction series is the basis for chemical reaction during reset process in the study. Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device. As for its materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide-doped metal technology to be introduced into the industry. Based on that, double-ended graphene oxide-doped silicon oxide based via-structure RRAM with filament self-aligning formation, and self-current limiting operation ability is demonstrated. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

No MeSH data available.