Limits...
Synthesis and anti-fungal effect of silver nanoparticles-chitosan composite particles.

Wang LS, Wang CY, Yang CH, Hsieh CL, Chen SY, Shen CY, Wang JJ, Huang KS - Int J Nanomedicine (2015)

Bottom Line: The diameter of the synthesized chitosan composite particles ranged from 1.7 mm to 2.5 mm, and the embedded silver nanoparticles were measured to be 15 ± 3.3 nm.The results show that the silver nanoparticles were distributed over the surface and interior of the chitosan spheres.The fabricated spheres had macroporous property, and could be used for many applications such as fungicidal agents in the future.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan ; Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan ; The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan ; Department of Chinese Medicine, E-Da Hospital, Kaohsiung, Taiwan.

ABSTRACT
Silver nanoparticles have been used in various fields, and several synthesis processes have been developed. The stability and dispersion of the synthesized nanoparticles is vital. The present article describes a novel approach for one-step synthesis of silver nanoparticles-embedded chitosan particles. The proposed approach was applied to simultaneously obtain and stabilize silver nanoparticles in a chitosan polymer matrix in-situ. The diameter of the synthesized chitosan composite particles ranged from 1.7 mm to 2.5 mm, and the embedded silver nanoparticles were measured to be 15 ± 3.3 nm. Further, the analyses of ultraviolet-visible spectroscopy, energy dispersive spectroscopy, and X-ray diffraction were employed to characterize the prepared composites. The results show that the silver nanoparticles were distributed over the surface and interior of the chitosan spheres. The fabricated spheres had macroporous property, and could be used for many applications such as fungicidal agents in the future.

No MeSH data available.


The SEM photographs of the synthesized silver nanoparticles–chitosan composite spheres.Notes: Panel (A) is the SEM photograph of a whole sphere. Panels (B) and (C) are the “zoom-in” counterparts of (A). Panel (D) is the SEM photograph of a sectioned sphere. Panels (E) and (F) are the “zoom-in” counterparts of (D). The scale bars are 1 mm (A and D), 100 μm (B and E), and 50 μm (C and F), respectively.Abbreviation: SEM, scanning electron microscopy.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4388074&req=5

f5-ijn-10-2685: The SEM photographs of the synthesized silver nanoparticles–chitosan composite spheres.Notes: Panel (A) is the SEM photograph of a whole sphere. Panels (B) and (C) are the “zoom-in” counterparts of (A). Panel (D) is the SEM photograph of a sectioned sphere. Panels (E) and (F) are the “zoom-in” counterparts of (D). The scale bars are 1 mm (A and D), 100 μm (B and E), and 50 μm (C and F), respectively.Abbreviation: SEM, scanning electron microscopy.

Mentions: Figure 5 shows the SEM photographs of the fabricated silver nanoparticles–chitosan composite spheres (using 1 mM AgNO3 and 20% NaOH). Figure 5A–C shows the SEM graphs of the surface and the “zoom-in” of their intact sphere counterparts. Figure 5D–F represent the SEM graphs of the morphology, and the “zoom-in” of their sectional sphere counterparts. The results show that the spheres possessed many irregular macro pores, particularly in their interior. Figure S2 shows the morphology of the chitosan spheres, which have relatively smooth structures compared with the silver nanoparticles–chitosan composite spheres. Vimala et al synthesized porous chitosan–silver nanocomposite films that had interdisciplinary applications in wound dressing, antibacterial agents, and water purification.49 In our study, the silver nanoparticles–chitosan composite spheres also possessed porous structures, and could be used in multiple fields.


Synthesis and anti-fungal effect of silver nanoparticles-chitosan composite particles.

Wang LS, Wang CY, Yang CH, Hsieh CL, Chen SY, Shen CY, Wang JJ, Huang KS - Int J Nanomedicine (2015)

The SEM photographs of the synthesized silver nanoparticles–chitosan composite spheres.Notes: Panel (A) is the SEM photograph of a whole sphere. Panels (B) and (C) are the “zoom-in” counterparts of (A). Panel (D) is the SEM photograph of a sectioned sphere. Panels (E) and (F) are the “zoom-in” counterparts of (D). The scale bars are 1 mm (A and D), 100 μm (B and E), and 50 μm (C and F), respectively.Abbreviation: SEM, scanning electron microscopy.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4388074&req=5

f5-ijn-10-2685: The SEM photographs of the synthesized silver nanoparticles–chitosan composite spheres.Notes: Panel (A) is the SEM photograph of a whole sphere. Panels (B) and (C) are the “zoom-in” counterparts of (A). Panel (D) is the SEM photograph of a sectioned sphere. Panels (E) and (F) are the “zoom-in” counterparts of (D). The scale bars are 1 mm (A and D), 100 μm (B and E), and 50 μm (C and F), respectively.Abbreviation: SEM, scanning electron microscopy.
Mentions: Figure 5 shows the SEM photographs of the fabricated silver nanoparticles–chitosan composite spheres (using 1 mM AgNO3 and 20% NaOH). Figure 5A–C shows the SEM graphs of the surface and the “zoom-in” of their intact sphere counterparts. Figure 5D–F represent the SEM graphs of the morphology, and the “zoom-in” of their sectional sphere counterparts. The results show that the spheres possessed many irregular macro pores, particularly in their interior. Figure S2 shows the morphology of the chitosan spheres, which have relatively smooth structures compared with the silver nanoparticles–chitosan composite spheres. Vimala et al synthesized porous chitosan–silver nanocomposite films that had interdisciplinary applications in wound dressing, antibacterial agents, and water purification.49 In our study, the silver nanoparticles–chitosan composite spheres also possessed porous structures, and could be used in multiple fields.

Bottom Line: The diameter of the synthesized chitosan composite particles ranged from 1.7 mm to 2.5 mm, and the embedded silver nanoparticles were measured to be 15 ± 3.3 nm.The results show that the silver nanoparticles were distributed over the surface and interior of the chitosan spheres.The fabricated spheres had macroporous property, and could be used for many applications such as fungicidal agents in the future.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan ; Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan ; The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan ; Department of Chinese Medicine, E-Da Hospital, Kaohsiung, Taiwan.

ABSTRACT
Silver nanoparticles have been used in various fields, and several synthesis processes have been developed. The stability and dispersion of the synthesized nanoparticles is vital. The present article describes a novel approach for one-step synthesis of silver nanoparticles-embedded chitosan particles. The proposed approach was applied to simultaneously obtain and stabilize silver nanoparticles in a chitosan polymer matrix in-situ. The diameter of the synthesized chitosan composite particles ranged from 1.7 mm to 2.5 mm, and the embedded silver nanoparticles were measured to be 15 ± 3.3 nm. Further, the analyses of ultraviolet-visible spectroscopy, energy dispersive spectroscopy, and X-ray diffraction were employed to characterize the prepared composites. The results show that the silver nanoparticles were distributed over the surface and interior of the chitosan spheres. The fabricated spheres had macroporous property, and could be used for many applications such as fungicidal agents in the future.

No MeSH data available.