Limits...
Y682G Mutation of Amyloid Precursor Protein Promotes Endo-Lysosomal Dysfunction by Disrupting APP-SorLA Interaction.

La Rosa LR, Perrone L, Nielsen MS, Calissano P, Andersen OM, Matrone C - Front Cell Neurosci (2015)

Bottom Line: Here, we report that Y682G mutation affects formation of the APP complex with sortilin-related receptor (SorLA), resulting in endo-lysosomal dysfunctions and neuronal degeneration.These results might open new possibilities in comprehending the role played by SorLA in its interaction with APP and in the progression of neuronal degeneration.In addition, they further underline the crucial role played by Y682 residue in controlling APP trafficking in neurons.

View Article: PubMed Central - PubMed

Affiliation: Institute of Cellular Biology and Neurobiology, National Council of Research of Rome , Rome , Italy.

ABSTRACT
The intracellular transport and localization of amyloid precursor protein (APP) are critical determinants of APP processing and β-amyloid peptide production, thus crucially important for the pathophysiology of Alzheimer's disease (AD). Notably, the C-terminal Y682ENPTY687 domain of APP binds to specific adaptors controlling APP trafficking and sorting in neurons. Mutation on the Y682 residue to glycine (Y682G) leads to altered APP sorting in hippocampal neurons that favors its accumulation in intracellular compartments and the release of soluble APPα. Such alterations induce premature aging and learning and cognitive deficits in APP Y682G mutant mice (APP (YG/YG) ). Here, we report that Y682G mutation affects formation of the APP complex with sortilin-related receptor (SorLA), resulting in endo-lysosomal dysfunctions and neuronal degeneration. Moreover, disruption of the APP/SorLA complex changes the trafficking pathway of SorLA, with its consequent increase in secretion outside neurons. Mutations in the SorLA gene are a prognostic factor in AD, and changes in SorLA levels in cerebrospinal fluid are predictive of AD in humans. These results might open new possibilities in comprehending the role played by SorLA in its interaction with APP and in the progression of neuronal degeneration. In addition, they further underline the crucial role played by Y682 residue in controlling APP trafficking in neurons.

No MeSH data available.


Related in: MedlinePlus

Amyloid precursor protein decreases in Golgi compartment and early endosomes. (A–G) Confocal microscopy analysis of double-staining for rabbit anti-APP red; (A,E)] and mouse anti-EEA1 [green; (B,F)] in WT and APPYG/YG (YG) hippocampal neurons [(A–D) and (E–H), respectively; 63× objective]. Scale bars = 7 μm. The panels are representative of three different experiments performed in duplicate. (C,G) and (D,H) Co-localization analysis of WT and APPYG/YG hippocampal neurons. The analysis was performed using Zen software. Notice that the area of overlap between APP and EEA1 immunostaining (white) was significantly decreased in APPYG/YG mice (H) compared with WT (D). The R coefficient (Pearson’s coefficient) was used for the quantitative and comparative analyses (I). The data are expressed as mean ± SEM. n = 6. **p < 0.001. (J,P) Confocal microscopy analysis of double-staining for rabbit anti-APP [red; (J,N)] and mouse anti-giantin [green; (K,O)] in WT and APPYG/YG (YG) hippocampal neurons [(J–L) and (N–P), respectively; 63× objective]. Scale bars = 5 μm. The panels are representative of five different experiments performed in duplicate. (L,P) and (M,Q) Co-localization analysis of WT and APPYG/YG hippocampal neurons. The analysis was performed using Zen software. The (R) coefficient (Pearson’s coefficient) was used for the quantitative and comparative analyses (R). The data are expressed as mean ± SEM. n = 10. **p < 0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4388009&req=5

Figure 2: Amyloid precursor protein decreases in Golgi compartment and early endosomes. (A–G) Confocal microscopy analysis of double-staining for rabbit anti-APP red; (A,E)] and mouse anti-EEA1 [green; (B,F)] in WT and APPYG/YG (YG) hippocampal neurons [(A–D) and (E–H), respectively; 63× objective]. Scale bars = 7 μm. The panels are representative of three different experiments performed in duplicate. (C,G) and (D,H) Co-localization analysis of WT and APPYG/YG hippocampal neurons. The analysis was performed using Zen software. Notice that the area of overlap between APP and EEA1 immunostaining (white) was significantly decreased in APPYG/YG mice (H) compared with WT (D). The R coefficient (Pearson’s coefficient) was used for the quantitative and comparative analyses (I). The data are expressed as mean ± SEM. n = 6. **p < 0.001. (J,P) Confocal microscopy analysis of double-staining for rabbit anti-APP [red; (J,N)] and mouse anti-giantin [green; (K,O)] in WT and APPYG/YG (YG) hippocampal neurons [(J–L) and (N–P), respectively; 63× objective]. Scale bars = 5 μm. The panels are representative of five different experiments performed in duplicate. (L,P) and (M,Q) Co-localization analysis of WT and APPYG/YG hippocampal neurons. The analysis was performed using Zen software. The (R) coefficient (Pearson’s coefficient) was used for the quantitative and comparative analyses (R). The data are expressed as mean ± SEM. n = 10. **p < 0.01.

Mentions: We next examined whether APP trafficking to the EE and Golgi compartment was also altered in APPYG/YG neurons. Interestingly, immunostaining for EEA1, a marker of EEs, indicated a reduction of co-localization with mutated APP in hippocampal neurons (Figures 2A–I). Similarly, APP localization in Golgi compartments that were positive for (Figures 2M,Q,R) Giantin was also reduced by the Y682G mutation (Figures 2J–R).


Y682G Mutation of Amyloid Precursor Protein Promotes Endo-Lysosomal Dysfunction by Disrupting APP-SorLA Interaction.

La Rosa LR, Perrone L, Nielsen MS, Calissano P, Andersen OM, Matrone C - Front Cell Neurosci (2015)

Amyloid precursor protein decreases in Golgi compartment and early endosomes. (A–G) Confocal microscopy analysis of double-staining for rabbit anti-APP red; (A,E)] and mouse anti-EEA1 [green; (B,F)] in WT and APPYG/YG (YG) hippocampal neurons [(A–D) and (E–H), respectively; 63× objective]. Scale bars = 7 μm. The panels are representative of three different experiments performed in duplicate. (C,G) and (D,H) Co-localization analysis of WT and APPYG/YG hippocampal neurons. The analysis was performed using Zen software. Notice that the area of overlap between APP and EEA1 immunostaining (white) was significantly decreased in APPYG/YG mice (H) compared with WT (D). The R coefficient (Pearson’s coefficient) was used for the quantitative and comparative analyses (I). The data are expressed as mean ± SEM. n = 6. **p < 0.001. (J,P) Confocal microscopy analysis of double-staining for rabbit anti-APP [red; (J,N)] and mouse anti-giantin [green; (K,O)] in WT and APPYG/YG (YG) hippocampal neurons [(J–L) and (N–P), respectively; 63× objective]. Scale bars = 5 μm. The panels are representative of five different experiments performed in duplicate. (L,P) and (M,Q) Co-localization analysis of WT and APPYG/YG hippocampal neurons. The analysis was performed using Zen software. The (R) coefficient (Pearson’s coefficient) was used for the quantitative and comparative analyses (R). The data are expressed as mean ± SEM. n = 10. **p < 0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4388009&req=5

Figure 2: Amyloid precursor protein decreases in Golgi compartment and early endosomes. (A–G) Confocal microscopy analysis of double-staining for rabbit anti-APP red; (A,E)] and mouse anti-EEA1 [green; (B,F)] in WT and APPYG/YG (YG) hippocampal neurons [(A–D) and (E–H), respectively; 63× objective]. Scale bars = 7 μm. The panels are representative of three different experiments performed in duplicate. (C,G) and (D,H) Co-localization analysis of WT and APPYG/YG hippocampal neurons. The analysis was performed using Zen software. Notice that the area of overlap between APP and EEA1 immunostaining (white) was significantly decreased in APPYG/YG mice (H) compared with WT (D). The R coefficient (Pearson’s coefficient) was used for the quantitative and comparative analyses (I). The data are expressed as mean ± SEM. n = 6. **p < 0.001. (J,P) Confocal microscopy analysis of double-staining for rabbit anti-APP [red; (J,N)] and mouse anti-giantin [green; (K,O)] in WT and APPYG/YG (YG) hippocampal neurons [(J–L) and (N–P), respectively; 63× objective]. Scale bars = 5 μm. The panels are representative of five different experiments performed in duplicate. (L,P) and (M,Q) Co-localization analysis of WT and APPYG/YG hippocampal neurons. The analysis was performed using Zen software. The (R) coefficient (Pearson’s coefficient) was used for the quantitative and comparative analyses (R). The data are expressed as mean ± SEM. n = 10. **p < 0.01.
Mentions: We next examined whether APP trafficking to the EE and Golgi compartment was also altered in APPYG/YG neurons. Interestingly, immunostaining for EEA1, a marker of EEs, indicated a reduction of co-localization with mutated APP in hippocampal neurons (Figures 2A–I). Similarly, APP localization in Golgi compartments that were positive for (Figures 2M,Q,R) Giantin was also reduced by the Y682G mutation (Figures 2J–R).

Bottom Line: Here, we report that Y682G mutation affects formation of the APP complex with sortilin-related receptor (SorLA), resulting in endo-lysosomal dysfunctions and neuronal degeneration.These results might open new possibilities in comprehending the role played by SorLA in its interaction with APP and in the progression of neuronal degeneration.In addition, they further underline the crucial role played by Y682 residue in controlling APP trafficking in neurons.

View Article: PubMed Central - PubMed

Affiliation: Institute of Cellular Biology and Neurobiology, National Council of Research of Rome , Rome , Italy.

ABSTRACT
The intracellular transport and localization of amyloid precursor protein (APP) are critical determinants of APP processing and β-amyloid peptide production, thus crucially important for the pathophysiology of Alzheimer's disease (AD). Notably, the C-terminal Y682ENPTY687 domain of APP binds to specific adaptors controlling APP trafficking and sorting in neurons. Mutation on the Y682 residue to glycine (Y682G) leads to altered APP sorting in hippocampal neurons that favors its accumulation in intracellular compartments and the release of soluble APPα. Such alterations induce premature aging and learning and cognitive deficits in APP Y682G mutant mice (APP (YG/YG) ). Here, we report that Y682G mutation affects formation of the APP complex with sortilin-related receptor (SorLA), resulting in endo-lysosomal dysfunctions and neuronal degeneration. Moreover, disruption of the APP/SorLA complex changes the trafficking pathway of SorLA, with its consequent increase in secretion outside neurons. Mutations in the SorLA gene are a prognostic factor in AD, and changes in SorLA levels in cerebrospinal fluid are predictive of AD in humans. These results might open new possibilities in comprehending the role played by SorLA in its interaction with APP and in the progression of neuronal degeneration. In addition, they further underline the crucial role played by Y682 residue in controlling APP trafficking in neurons.

No MeSH data available.


Related in: MedlinePlus