Limits...
Y682G Mutation of Amyloid Precursor Protein Promotes Endo-Lysosomal Dysfunction by Disrupting APP-SorLA Interaction.

La Rosa LR, Perrone L, Nielsen MS, Calissano P, Andersen OM, Matrone C - Front Cell Neurosci (2015)

Bottom Line: Here, we report that Y682G mutation affects formation of the APP complex with sortilin-related receptor (SorLA), resulting in endo-lysosomal dysfunctions and neuronal degeneration.These results might open new possibilities in comprehending the role played by SorLA in its interaction with APP and in the progression of neuronal degeneration.In addition, they further underline the crucial role played by Y682 residue in controlling APP trafficking in neurons.

View Article: PubMed Central - PubMed

Affiliation: Institute of Cellular Biology and Neurobiology, National Council of Research of Rome , Rome , Italy.

ABSTRACT
The intracellular transport and localization of amyloid precursor protein (APP) are critical determinants of APP processing and β-amyloid peptide production, thus crucially important for the pathophysiology of Alzheimer's disease (AD). Notably, the C-terminal Y682ENPTY687 domain of APP binds to specific adaptors controlling APP trafficking and sorting in neurons. Mutation on the Y682 residue to glycine (Y682G) leads to altered APP sorting in hippocampal neurons that favors its accumulation in intracellular compartments and the release of soluble APPα. Such alterations induce premature aging and learning and cognitive deficits in APP Y682G mutant mice (APP (YG/YG) ). Here, we report that Y682G mutation affects formation of the APP complex with sortilin-related receptor (SorLA), resulting in endo-lysosomal dysfunctions and neuronal degeneration. Moreover, disruption of the APP/SorLA complex changes the trafficking pathway of SorLA, with its consequent increase in secretion outside neurons. Mutations in the SorLA gene are a prognostic factor in AD, and changes in SorLA levels in cerebrospinal fluid are predictive of AD in humans. These results might open new possibilities in comprehending the role played by SorLA in its interaction with APP and in the progression of neuronal degeneration. In addition, they further underline the crucial role played by Y682 residue in controlling APP trafficking in neurons.

No MeSH data available.


Related in: MedlinePlus

Amyloid precursor protein increases in LAMP1- and Rab7-positive vesicles. (A–G) Confocal microscopy analysis of double-staining of mouse anti-APP [red; (A,E)] and rabbit anti-Lamp1 [green; (B,F)] in WT and APPYG/YG (YG) hippocampal neurons [(A–D) and (E–H), respectively; 63× objective). Scale bars = 10 μm. The panels are representative of five different experiments performed in duplicate. [(C,G) and (D,H)] Co-localization analysis of WT and APPYG/YG hippocampal neurons. The analysis was performed using Zen/Zeiss software. Notice that the area of overlap between APP and Lamp1 immunostaining (white) was significantly increased in APPYG/YG mice (H) compared with WT (D). (D,H) High magnification of (C,G). The (R) coefficient (Pearson’s coefficient) was used for the quantitative and comparative analyses (I). The data are expressed as mean ± SEM. n = 10. *p < 0.05. (J–P) Confocal microscopy analysis of double-staining for mouse anti-APP [red; (J,N)] and rabbit anti-Rab7 [green; (K,O)] in WT and APPYG/YG (YG) hippocampal neurons [(J–M) and (N–Q), respectively; 63× objective]. Scale bars = 10 μm. The panels are representative of four different experiments performed in duplicate. [(L,P) and (M,Q)] Co-localization analysis of WT and APPYG/YG hippocampal neurons. The analysis was performed using Zen software. Notice that the area of overlap between APP and Rab7 immunostaining (white) was significantly increased in APPYG/YG mice (Q) compared with WT (M). (M,Q) High magnification of (L,P). The (R) coefficient (Pearson’s coefficient) was used for the quantitative and comparative analyses (R). The data are expressed as mean ± SEM. n = 8. *p < 0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4388009&req=5

Figure 1: Amyloid precursor protein increases in LAMP1- and Rab7-positive vesicles. (A–G) Confocal microscopy analysis of double-staining of mouse anti-APP [red; (A,E)] and rabbit anti-Lamp1 [green; (B,F)] in WT and APPYG/YG (YG) hippocampal neurons [(A–D) and (E–H), respectively; 63× objective). Scale bars = 10 μm. The panels are representative of five different experiments performed in duplicate. [(C,G) and (D,H)] Co-localization analysis of WT and APPYG/YG hippocampal neurons. The analysis was performed using Zen/Zeiss software. Notice that the area of overlap between APP and Lamp1 immunostaining (white) was significantly increased in APPYG/YG mice (H) compared with WT (D). (D,H) High magnification of (C,G). The (R) coefficient (Pearson’s coefficient) was used for the quantitative and comparative analyses (I). The data are expressed as mean ± SEM. n = 10. *p < 0.05. (J–P) Confocal microscopy analysis of double-staining for mouse anti-APP [red; (J,N)] and rabbit anti-Rab7 [green; (K,O)] in WT and APPYG/YG (YG) hippocampal neurons [(J–M) and (N–Q), respectively; 63× objective]. Scale bars = 10 μm. The panels are representative of four different experiments performed in duplicate. [(L,P) and (M,Q)] Co-localization analysis of WT and APPYG/YG hippocampal neurons. The analysis was performed using Zen software. Notice that the area of overlap between APP and Rab7 immunostaining (white) was significantly increased in APPYG/YG mice (Q) compared with WT (M). (M,Q) High magnification of (L,P). The (R) coefficient (Pearson’s coefficient) was used for the quantitative and comparative analyses (R). The data are expressed as mean ± SEM. n = 8. *p < 0.05.

Mentions: We performed confocal microscopy of neurons that were stained with antibodies against APP and either lysosomal-associated membrane protein 1 (Lamp1) or Rab7 (Figure 1). We found an augmented overlap between the localization of APP (red) and Lamp1 (green) in APPYG/YG neurons (YG) compared with WT cells (Figure 1I). We also detected an increase in the co-localization between APP and Rab7, a marker of the LE (Figure 1R).


Y682G Mutation of Amyloid Precursor Protein Promotes Endo-Lysosomal Dysfunction by Disrupting APP-SorLA Interaction.

La Rosa LR, Perrone L, Nielsen MS, Calissano P, Andersen OM, Matrone C - Front Cell Neurosci (2015)

Amyloid precursor protein increases in LAMP1- and Rab7-positive vesicles. (A–G) Confocal microscopy analysis of double-staining of mouse anti-APP [red; (A,E)] and rabbit anti-Lamp1 [green; (B,F)] in WT and APPYG/YG (YG) hippocampal neurons [(A–D) and (E–H), respectively; 63× objective). Scale bars = 10 μm. The panels are representative of five different experiments performed in duplicate. [(C,G) and (D,H)] Co-localization analysis of WT and APPYG/YG hippocampal neurons. The analysis was performed using Zen/Zeiss software. Notice that the area of overlap between APP and Lamp1 immunostaining (white) was significantly increased in APPYG/YG mice (H) compared with WT (D). (D,H) High magnification of (C,G). The (R) coefficient (Pearson’s coefficient) was used for the quantitative and comparative analyses (I). The data are expressed as mean ± SEM. n = 10. *p < 0.05. (J–P) Confocal microscopy analysis of double-staining for mouse anti-APP [red; (J,N)] and rabbit anti-Rab7 [green; (K,O)] in WT and APPYG/YG (YG) hippocampal neurons [(J–M) and (N–Q), respectively; 63× objective]. Scale bars = 10 μm. The panels are representative of four different experiments performed in duplicate. [(L,P) and (M,Q)] Co-localization analysis of WT and APPYG/YG hippocampal neurons. The analysis was performed using Zen software. Notice that the area of overlap between APP and Rab7 immunostaining (white) was significantly increased in APPYG/YG mice (Q) compared with WT (M). (M,Q) High magnification of (L,P). The (R) coefficient (Pearson’s coefficient) was used for the quantitative and comparative analyses (R). The data are expressed as mean ± SEM. n = 8. *p < 0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4388009&req=5

Figure 1: Amyloid precursor protein increases in LAMP1- and Rab7-positive vesicles. (A–G) Confocal microscopy analysis of double-staining of mouse anti-APP [red; (A,E)] and rabbit anti-Lamp1 [green; (B,F)] in WT and APPYG/YG (YG) hippocampal neurons [(A–D) and (E–H), respectively; 63× objective). Scale bars = 10 μm. The panels are representative of five different experiments performed in duplicate. [(C,G) and (D,H)] Co-localization analysis of WT and APPYG/YG hippocampal neurons. The analysis was performed using Zen/Zeiss software. Notice that the area of overlap between APP and Lamp1 immunostaining (white) was significantly increased in APPYG/YG mice (H) compared with WT (D). (D,H) High magnification of (C,G). The (R) coefficient (Pearson’s coefficient) was used for the quantitative and comparative analyses (I). The data are expressed as mean ± SEM. n = 10. *p < 0.05. (J–P) Confocal microscopy analysis of double-staining for mouse anti-APP [red; (J,N)] and rabbit anti-Rab7 [green; (K,O)] in WT and APPYG/YG (YG) hippocampal neurons [(J–M) and (N–Q), respectively; 63× objective]. Scale bars = 10 μm. The panels are representative of four different experiments performed in duplicate. [(L,P) and (M,Q)] Co-localization analysis of WT and APPYG/YG hippocampal neurons. The analysis was performed using Zen software. Notice that the area of overlap between APP and Rab7 immunostaining (white) was significantly increased in APPYG/YG mice (Q) compared with WT (M). (M,Q) High magnification of (L,P). The (R) coefficient (Pearson’s coefficient) was used for the quantitative and comparative analyses (R). The data are expressed as mean ± SEM. n = 8. *p < 0.05.
Mentions: We performed confocal microscopy of neurons that were stained with antibodies against APP and either lysosomal-associated membrane protein 1 (Lamp1) or Rab7 (Figure 1). We found an augmented overlap between the localization of APP (red) and Lamp1 (green) in APPYG/YG neurons (YG) compared with WT cells (Figure 1I). We also detected an increase in the co-localization between APP and Rab7, a marker of the LE (Figure 1R).

Bottom Line: Here, we report that Y682G mutation affects formation of the APP complex with sortilin-related receptor (SorLA), resulting in endo-lysosomal dysfunctions and neuronal degeneration.These results might open new possibilities in comprehending the role played by SorLA in its interaction with APP and in the progression of neuronal degeneration.In addition, they further underline the crucial role played by Y682 residue in controlling APP trafficking in neurons.

View Article: PubMed Central - PubMed

Affiliation: Institute of Cellular Biology and Neurobiology, National Council of Research of Rome , Rome , Italy.

ABSTRACT
The intracellular transport and localization of amyloid precursor protein (APP) are critical determinants of APP processing and β-amyloid peptide production, thus crucially important for the pathophysiology of Alzheimer's disease (AD). Notably, the C-terminal Y682ENPTY687 domain of APP binds to specific adaptors controlling APP trafficking and sorting in neurons. Mutation on the Y682 residue to glycine (Y682G) leads to altered APP sorting in hippocampal neurons that favors its accumulation in intracellular compartments and the release of soluble APPα. Such alterations induce premature aging and learning and cognitive deficits in APP Y682G mutant mice (APP (YG/YG) ). Here, we report that Y682G mutation affects formation of the APP complex with sortilin-related receptor (SorLA), resulting in endo-lysosomal dysfunctions and neuronal degeneration. Moreover, disruption of the APP/SorLA complex changes the trafficking pathway of SorLA, with its consequent increase in secretion outside neurons. Mutations in the SorLA gene are a prognostic factor in AD, and changes in SorLA levels in cerebrospinal fluid are predictive of AD in humans. These results might open new possibilities in comprehending the role played by SorLA in its interaction with APP and in the progression of neuronal degeneration. In addition, they further underline the crucial role played by Y682 residue in controlling APP trafficking in neurons.

No MeSH data available.


Related in: MedlinePlus