Limits...
The antimicrobial peptide pardaxin exerts potent anti-tumor activity against canine perianal gland adenoma.

Pan CY, Lin CN, Chiou MT, Yu CY, Chen JY, Chien CH - Oncotarget (2015)

Bottom Line: Local injection of pardaxin resulted in a significant reduction of perianal gland adenoma growth between 28 and 38 days post-treatment.Surgical resection of canine histiocytomas revealed large areas of ulceration, suggesting that pardaxin acts like a lytic peptide.Pardaxin treatment was not associated with significant variations in blood biochemical parameters or secretion of immune-related proteins.

View Article: PubMed Central - PubMed

Affiliation: Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Nanzih Dist., Kaohsiung, Taiwan.

ABSTRACT
Pardaxin is an antimicrobial peptide of 33 amino acids, originally isolated from marine fish. We previously demonstrated that pardaxin has anti-tumor activity against murine fibrosarcoma, both in vitro and in vivo. In this study, we examined the anti-tumor activity, toxicity profile, and maximally-tolerated dose of pardaxin treatment in dogs with different types of refractory tumor. Local injection of pardaxin resulted in a significant reduction of perianal gland adenoma growth between 28 and 38 days post-treatment. Surgical resection of canine histiocytomas revealed large areas of ulceration, suggesting that pardaxin acts like a lytic peptide. Pardaxin treatment was not associated with significant variations in blood biochemical parameters or secretion of immune-related proteins. Our findings indicate that pardaxin has strong therapeutic potential for treating perianal gland adenomas in dogs. These data justify the veterinary application of pardaxin, and also provide invaluable information for veterinary medicine and future human clinical trials.

Show MeSH

Related in: MedlinePlus

Change in tumor volume during treatment with pardaxin(a) Five mammary tumors (of dogs #1, #2, and #5) were monitored for 20 days. (b) One fibrosarcoma tumor (of dog #3) was monitored for 28 days. (c) Two squamous cell carcinomas (of dog #4) were monitored for 28 days. (d) Three malignant mast cell tumors (of dogs #9 and #11) were monitored for 28 days. (e) One sarcoma tumor (of dog #12) was monitored for 28 days. Descriptions of tumor features and pardaxin treatment regimens are provided in Tables 1 and 2. The first day of pardaxin administration is labeled as day one. Each tumor of each dog was injected with a different concentration of pardaxin, and results are plotted using different colors. The tumor volumes (cm3) of individual tumors are shown.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385852&req=5

Figure 1: Change in tumor volume during treatment with pardaxin(a) Five mammary tumors (of dogs #1, #2, and #5) were monitored for 20 days. (b) One fibrosarcoma tumor (of dog #3) was monitored for 28 days. (c) Two squamous cell carcinomas (of dog #4) were monitored for 28 days. (d) Three malignant mast cell tumors (of dogs #9 and #11) were monitored for 28 days. (e) One sarcoma tumor (of dog #12) was monitored for 28 days. Descriptions of tumor features and pardaxin treatment regimens are provided in Tables 1 and 2. The first day of pardaxin administration is labeled as day one. Each tumor of each dog was injected with a different concentration of pardaxin, and results are plotted using different colors. The tumor volumes (cm3) of individual tumors are shown.

Mentions: Dog patients with various tumor types were given daily intratumoral injections of pardaxin at dosages ranging from 0.010 mg/cm2 to 16.666 mg/cm2 (Table 2). Dog patients #1, #2, #5, and #8 had mammary gland tumors; while the volume of the tumor in dog #2 decreased during pardaxin treatment, the growth of the other mammary gland tumors were not substantially affected (Fig. 1a, Table 2). The volume of the fibrosarcoma in dog #3 was decreased at the end of the pardaxin treatment period (Fig. 1b, Table 2). Dog patient #4 bore two squamous cell carcinomas; while the volume of one tumor (B) was no different before and after pardaxin treatment, the volume of the second tumor (A) was decreased (Fig. 1c, Table 2). Dogs #9 and 11 possessed malignant mast cell tumors; the volume of one of the tumors (B) in dog #9 was decreased at the end of the treatment period, while the volumes of the second tumor (A) in dog #9 and the tumor in dog #11 were unaffected (Fig. 1d, Table 2). The volume of the sarcoma in dog #12 was also unaffected by pardaxin treatment (Fig. 1e, Table 2).


The antimicrobial peptide pardaxin exerts potent anti-tumor activity against canine perianal gland adenoma.

Pan CY, Lin CN, Chiou MT, Yu CY, Chen JY, Chien CH - Oncotarget (2015)

Change in tumor volume during treatment with pardaxin(a) Five mammary tumors (of dogs #1, #2, and #5) were monitored for 20 days. (b) One fibrosarcoma tumor (of dog #3) was monitored for 28 days. (c) Two squamous cell carcinomas (of dog #4) were monitored for 28 days. (d) Three malignant mast cell tumors (of dogs #9 and #11) were monitored for 28 days. (e) One sarcoma tumor (of dog #12) was monitored for 28 days. Descriptions of tumor features and pardaxin treatment regimens are provided in Tables 1 and 2. The first day of pardaxin administration is labeled as day one. Each tumor of each dog was injected with a different concentration of pardaxin, and results are plotted using different colors. The tumor volumes (cm3) of individual tumors are shown.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385852&req=5

Figure 1: Change in tumor volume during treatment with pardaxin(a) Five mammary tumors (of dogs #1, #2, and #5) were monitored for 20 days. (b) One fibrosarcoma tumor (of dog #3) was monitored for 28 days. (c) Two squamous cell carcinomas (of dog #4) were monitored for 28 days. (d) Three malignant mast cell tumors (of dogs #9 and #11) were monitored for 28 days. (e) One sarcoma tumor (of dog #12) was monitored for 28 days. Descriptions of tumor features and pardaxin treatment regimens are provided in Tables 1 and 2. The first day of pardaxin administration is labeled as day one. Each tumor of each dog was injected with a different concentration of pardaxin, and results are plotted using different colors. The tumor volumes (cm3) of individual tumors are shown.
Mentions: Dog patients with various tumor types were given daily intratumoral injections of pardaxin at dosages ranging from 0.010 mg/cm2 to 16.666 mg/cm2 (Table 2). Dog patients #1, #2, #5, and #8 had mammary gland tumors; while the volume of the tumor in dog #2 decreased during pardaxin treatment, the growth of the other mammary gland tumors were not substantially affected (Fig. 1a, Table 2). The volume of the fibrosarcoma in dog #3 was decreased at the end of the pardaxin treatment period (Fig. 1b, Table 2). Dog patient #4 bore two squamous cell carcinomas; while the volume of one tumor (B) was no different before and after pardaxin treatment, the volume of the second tumor (A) was decreased (Fig. 1c, Table 2). Dogs #9 and 11 possessed malignant mast cell tumors; the volume of one of the tumors (B) in dog #9 was decreased at the end of the treatment period, while the volumes of the second tumor (A) in dog #9 and the tumor in dog #11 were unaffected (Fig. 1d, Table 2). The volume of the sarcoma in dog #12 was also unaffected by pardaxin treatment (Fig. 1e, Table 2).

Bottom Line: Local injection of pardaxin resulted in a significant reduction of perianal gland adenoma growth between 28 and 38 days post-treatment.Surgical resection of canine histiocytomas revealed large areas of ulceration, suggesting that pardaxin acts like a lytic peptide.Pardaxin treatment was not associated with significant variations in blood biochemical parameters or secretion of immune-related proteins.

View Article: PubMed Central - PubMed

Affiliation: Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Nanzih Dist., Kaohsiung, Taiwan.

ABSTRACT
Pardaxin is an antimicrobial peptide of 33 amino acids, originally isolated from marine fish. We previously demonstrated that pardaxin has anti-tumor activity against murine fibrosarcoma, both in vitro and in vivo. In this study, we examined the anti-tumor activity, toxicity profile, and maximally-tolerated dose of pardaxin treatment in dogs with different types of refractory tumor. Local injection of pardaxin resulted in a significant reduction of perianal gland adenoma growth between 28 and 38 days post-treatment. Surgical resection of canine histiocytomas revealed large areas of ulceration, suggesting that pardaxin acts like a lytic peptide. Pardaxin treatment was not associated with significant variations in blood biochemical parameters or secretion of immune-related proteins. Our findings indicate that pardaxin has strong therapeutic potential for treating perianal gland adenomas in dogs. These data justify the veterinary application of pardaxin, and also provide invaluable information for veterinary medicine and future human clinical trials.

Show MeSH
Related in: MedlinePlus