Limits...
MicroRNA-26a promotes anoikis in human hepatocellular carcinoma cells by targeting alpha5 integrin.

Zhang X, Cheng SL, Bian K, Wang L, Zhang X, Yan B, Jia LT, Zhao J, Gammoh N, Yang AG, Zhang R - Oncotarget (2015)

Bottom Line: Previous studies demonstrate that microRNA-26a (miR-26a) is an important tumor suppressor that inhibits the proliferation and invasion of HCC cells by targeting multiple oncogenic proteins.However, whether miR-26a can also influence anoikis has not been well established.Here, we discovered that miR-26a promotes anoikis of HCC cells both in vitro and in vivo.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, the Fourth Military Medical University, Xi'an, Shaanxi, China.

ABSTRACT
Metastasis is the major reason for the death of patients suffering from malignant diseases such as human hepatocellular carcinoma (HCC). Among the complex metastatic process, resistance to anoikis is one of the most important steps. Previous studies demonstrate that microRNA-26a (miR-26a) is an important tumor suppressor that inhibits the proliferation and invasion of HCC cells by targeting multiple oncogenic proteins. However, whether miR-26a can also influence anoikis has not been well established. Here, we discovered that miR-26a promotes anoikis of HCC cells both in vitro and in vivo. With a combinational analysis of bioinformatics and public clinical databases, we predicted that alpha5 integrin (ITGA5), an integrin family member, is a putative target of miR-26a. Furthermore, we provide experimental evidence to confirm that ITGA5 is a bona fide target of miR-26a. Through gain- and loss-of-function studies, we demonstrate that ITGA5 is a functional target of miR-26a-induced anoikis in HCC cells. Collectively, our findings reveal that miR-26a is a novel player during anoikis and a potential therapeutic target for the treatment of metastatic HCC.

Show MeSH

Related in: MedlinePlus

ITGA5 over-expression rescues phenotypes induced by miR-26a(A, B) Relative ITGA5 expression levels in BEL-7404(left) and FHCC-98(right) cells stably expressing ITGA5 were determined by qRT-PCR(A) and western blot(B). (C) The anoikis activity of ITGA5 stably over-expressed HCC cell lines was evaluated by Annexin-V/PI staining. Cells (1×106) were cultured for 48 h in poly-HEMA pre-coated plates before evaluation. **, P < 0.01. Error bars, s.d. (experiments depicted in A&C performed in triplicate).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385851&req=5

Figure 5: ITGA5 over-expression rescues phenotypes induced by miR-26a(A, B) Relative ITGA5 expression levels in BEL-7404(left) and FHCC-98(right) cells stably expressing ITGA5 were determined by qRT-PCR(A) and western blot(B). (C) The anoikis activity of ITGA5 stably over-expressed HCC cell lines was evaluated by Annexin-V/PI staining. Cells (1×106) were cultured for 48 h in poly-HEMA pre-coated plates before evaluation. **, P < 0.01. Error bars, s.d. (experiments depicted in A&C performed in triplicate).

Mentions: Our data suggest that ITGA5 is targeted by miR-26a during anoikis. Therefore, we predict that reconstitution of ITGA5 in miR-26a–expressing cells can antagonize the effects of miR-26a in this process. To test this, we infected miR-26a-expressing cells with lentivirus-delivered ITGA5 lacking the 3′UTR (Figure 5A-B). As expected, Annexin-V staining shows that reintroduction of ITGA5 counteract anoikis induced by miR-26a (Figure 5C). Taken together, our findings show that ITGA5 reintroduction can abrogate miR-26a–induced anoikis, suggesting that ITGA5 is a functional target of miR-26a in HCC cells.


MicroRNA-26a promotes anoikis in human hepatocellular carcinoma cells by targeting alpha5 integrin.

Zhang X, Cheng SL, Bian K, Wang L, Zhang X, Yan B, Jia LT, Zhao J, Gammoh N, Yang AG, Zhang R - Oncotarget (2015)

ITGA5 over-expression rescues phenotypes induced by miR-26a(A, B) Relative ITGA5 expression levels in BEL-7404(left) and FHCC-98(right) cells stably expressing ITGA5 were determined by qRT-PCR(A) and western blot(B). (C) The anoikis activity of ITGA5 stably over-expressed HCC cell lines was evaluated by Annexin-V/PI staining. Cells (1×106) were cultured for 48 h in poly-HEMA pre-coated plates before evaluation. **, P < 0.01. Error bars, s.d. (experiments depicted in A&C performed in triplicate).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385851&req=5

Figure 5: ITGA5 over-expression rescues phenotypes induced by miR-26a(A, B) Relative ITGA5 expression levels in BEL-7404(left) and FHCC-98(right) cells stably expressing ITGA5 were determined by qRT-PCR(A) and western blot(B). (C) The anoikis activity of ITGA5 stably over-expressed HCC cell lines was evaluated by Annexin-V/PI staining. Cells (1×106) were cultured for 48 h in poly-HEMA pre-coated plates before evaluation. **, P < 0.01. Error bars, s.d. (experiments depicted in A&C performed in triplicate).
Mentions: Our data suggest that ITGA5 is targeted by miR-26a during anoikis. Therefore, we predict that reconstitution of ITGA5 in miR-26a–expressing cells can antagonize the effects of miR-26a in this process. To test this, we infected miR-26a-expressing cells with lentivirus-delivered ITGA5 lacking the 3′UTR (Figure 5A-B). As expected, Annexin-V staining shows that reintroduction of ITGA5 counteract anoikis induced by miR-26a (Figure 5C). Taken together, our findings show that ITGA5 reintroduction can abrogate miR-26a–induced anoikis, suggesting that ITGA5 is a functional target of miR-26a in HCC cells.

Bottom Line: Previous studies demonstrate that microRNA-26a (miR-26a) is an important tumor suppressor that inhibits the proliferation and invasion of HCC cells by targeting multiple oncogenic proteins.However, whether miR-26a can also influence anoikis has not been well established.Here, we discovered that miR-26a promotes anoikis of HCC cells both in vitro and in vivo.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, the Fourth Military Medical University, Xi'an, Shaanxi, China.

ABSTRACT
Metastasis is the major reason for the death of patients suffering from malignant diseases such as human hepatocellular carcinoma (HCC). Among the complex metastatic process, resistance to anoikis is one of the most important steps. Previous studies demonstrate that microRNA-26a (miR-26a) is an important tumor suppressor that inhibits the proliferation and invasion of HCC cells by targeting multiple oncogenic proteins. However, whether miR-26a can also influence anoikis has not been well established. Here, we discovered that miR-26a promotes anoikis of HCC cells both in vitro and in vivo. With a combinational analysis of bioinformatics and public clinical databases, we predicted that alpha5 integrin (ITGA5), an integrin family member, is a putative target of miR-26a. Furthermore, we provide experimental evidence to confirm that ITGA5 is a bona fide target of miR-26a. Through gain- and loss-of-function studies, we demonstrate that ITGA5 is a functional target of miR-26a-induced anoikis in HCC cells. Collectively, our findings reveal that miR-26a is a novel player during anoikis and a potential therapeutic target for the treatment of metastatic HCC.

Show MeSH
Related in: MedlinePlus