Limits...
Random nanostructured metallic films for environmental monitoring and optical sensing: experimental and computational studies.

Karbovnyk I, Collins J, Bolesta I, Stelmashchuk A, Kolkevych A, Velupillai S, Klym H, Fedyshyn O, Tymoshuk S, Kolych I - Nanoscale Res Lett (2015)

Bottom Line: Surface plasmon resonance-related phenomena are emphasized.Resonant optical absorption band changes due to the influence of noxious gases are investigated.Amplification of light at the film surface due to local electromagnetic field enhancement at the nanoscale is discussed based on finite difference time domain calculations.

View Article: PubMed Central - PubMed

Affiliation: Ivan Franko National University of Lviv, 1 Universytetska str, Lviv, 79000 Ukraine.

ABSTRACT
Nanostructured silver films are studied using computational and experimental methods. Surface plasmon resonance-related phenomena are emphasized. Resonant optical absorption band changes due to the influence of noxious gases are investigated. Amplification of light at the film surface due to local electromagnetic field enhancement at the nanoscale is discussed based on finite difference time domain calculations.

No MeSH data available.


Related in: MedlinePlus

3D computer-generated patterns and AFM image of a real structure. Showing the morphology of island films ((a) 0.15 fill ratio, (b) 0.55 fill ratio); real morphology of the nanostructured silver film (height increases from darker to brighter, the brightest points correspond to approximately 15 nm) as seen by AFM (c); simulated film roughness (mean square deviation of film height at each simulated point from the average film thickness) as a function of fill ratio (d).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385309&req=5

Fig2: 3D computer-generated patterns and AFM image of a real structure. Showing the morphology of island films ((a) 0.15 fill ratio, (b) 0.55 fill ratio); real morphology of the nanostructured silver film (height increases from darker to brighter, the brightest points correspond to approximately 15 nm) as seen by AFM (c); simulated film roughness (mean square deviation of film height at each simulated point from the average film thickness) as a function of fill ratio (d).

Mentions: Figure 1 shows the fragment of a typical scanning electron microscopy (SEM) image of obtained near percolation silver film along with the two-dimensional computer-generated reconstruction. Properties of the films, including roughness and fractal dimension, were calculated for different simulated structures. Roughness was estimated at different iterations of the simulation algorithm. Fractal dimension of the simulated film was obtained by box counting [14] and falls within 2.0…2.5 range. Island structure of the simulated random films and the evolution of the film roughness with the increase of fill ratio are illustrated in Figure 2. For the purpose of comparison, real Ag film morphology observed using atomic force microscopy imaging is also shown.Figure 1


Random nanostructured metallic films for environmental monitoring and optical sensing: experimental and computational studies.

Karbovnyk I, Collins J, Bolesta I, Stelmashchuk A, Kolkevych A, Velupillai S, Klym H, Fedyshyn O, Tymoshuk S, Kolych I - Nanoscale Res Lett (2015)

3D computer-generated patterns and AFM image of a real structure. Showing the morphology of island films ((a) 0.15 fill ratio, (b) 0.55 fill ratio); real morphology of the nanostructured silver film (height increases from darker to brighter, the brightest points correspond to approximately 15 nm) as seen by AFM (c); simulated film roughness (mean square deviation of film height at each simulated point from the average film thickness) as a function of fill ratio (d).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385309&req=5

Fig2: 3D computer-generated patterns and AFM image of a real structure. Showing the morphology of island films ((a) 0.15 fill ratio, (b) 0.55 fill ratio); real morphology of the nanostructured silver film (height increases from darker to brighter, the brightest points correspond to approximately 15 nm) as seen by AFM (c); simulated film roughness (mean square deviation of film height at each simulated point from the average film thickness) as a function of fill ratio (d).
Mentions: Figure 1 shows the fragment of a typical scanning electron microscopy (SEM) image of obtained near percolation silver film along with the two-dimensional computer-generated reconstruction. Properties of the films, including roughness and fractal dimension, were calculated for different simulated structures. Roughness was estimated at different iterations of the simulation algorithm. Fractal dimension of the simulated film was obtained by box counting [14] and falls within 2.0…2.5 range. Island structure of the simulated random films and the evolution of the film roughness with the increase of fill ratio are illustrated in Figure 2. For the purpose of comparison, real Ag film morphology observed using atomic force microscopy imaging is also shown.Figure 1

Bottom Line: Surface plasmon resonance-related phenomena are emphasized.Resonant optical absorption band changes due to the influence of noxious gases are investigated.Amplification of light at the film surface due to local electromagnetic field enhancement at the nanoscale is discussed based on finite difference time domain calculations.

View Article: PubMed Central - PubMed

Affiliation: Ivan Franko National University of Lviv, 1 Universytetska str, Lviv, 79000 Ukraine.

ABSTRACT
Nanostructured silver films are studied using computational and experimental methods. Surface plasmon resonance-related phenomena are emphasized. Resonant optical absorption band changes due to the influence of noxious gases are investigated. Amplification of light at the film surface due to local electromagnetic field enhancement at the nanoscale is discussed based on finite difference time domain calculations.

No MeSH data available.


Related in: MedlinePlus