Limits...
Nanoprocessing of layered crystalline materials by atomic force microscopy.

Miyake S, Wang M - Nanoscale Res Lett (2015)

Bottom Line: By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds.Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level.It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

View Article: PubMed Central - PubMed

Affiliation: Department of Innovative System Engineering, Nippon Institute of Technology, Saitama, Japan.

ABSTRACT
By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds. Mica (muscovite), graphite, molybdenum disulfide (MoS2), and boron nitride have layered structures, and there is little interaction between the cleavage planes existing in the basal planes of these materials. Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level. This study reviews research evaluating the nanometer-scale wear and friction as well as the nanometer-scale mechanical processing of muscovite using atomic force microscopy (AFM). It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

No MeSH data available.


Related in: MedlinePlus

Dependence of processing depth on load for muscovite. Processed profile (a) and processed depth (b).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385287&req=5

Fig8: Dependence of processing depth on load for muscovite. Processed profile (a) and processed depth (b).

Mentions: Under a load of 100 nN, no atomic-scale-processed grooves were observed after 104 sliding cycles by AFM evaluation. At loads exceeding 130 nN, grooves were formed on the damage-free mica surface. Once damage occurred on the surface, processing progressed easily. Figure 8 shows the dependence of the profile and depth of processed grooves on load after two sliding cycles. The depths of the processed grooves changed discretely with load. Processing was started with a load of 500 nN. The depths of the processed grooves were 1 nm for loads of 500 and 3,000 nN, 2.6 nm for 3,500-nN loads, and 4 nm for 4,000-nN loads. The processed depths were mainly multiples of 0.8 and 1.0 nm. The 0.8-nm depth corresponded to the distance from the top surface of SiO4 to the cleavage plane of potassium, while the 1.0 nm depth corresponded to the distance from the top surface of SiO4 to that of the next SiO4 beneath it. The interface between K-SiO4 and SiO4-K was weak; therefore, the removed depths of 0.8 and 1.0 nm were predominant. Potassium atoms adhered on the SiO4 surface were easily removed by the sliding of the tip due to the low adhesion strength between potassium and SiO4. Therefore, a 1-nm-deep groove with an atomically smooth bottom surface was obtained by sliding the tip several times. Larger loads damaged the layers deeper than 1 nm.Figure 8


Nanoprocessing of layered crystalline materials by atomic force microscopy.

Miyake S, Wang M - Nanoscale Res Lett (2015)

Dependence of processing depth on load for muscovite. Processed profile (a) and processed depth (b).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385287&req=5

Fig8: Dependence of processing depth on load for muscovite. Processed profile (a) and processed depth (b).
Mentions: Under a load of 100 nN, no atomic-scale-processed grooves were observed after 104 sliding cycles by AFM evaluation. At loads exceeding 130 nN, grooves were formed on the damage-free mica surface. Once damage occurred on the surface, processing progressed easily. Figure 8 shows the dependence of the profile and depth of processed grooves on load after two sliding cycles. The depths of the processed grooves changed discretely with load. Processing was started with a load of 500 nN. The depths of the processed grooves were 1 nm for loads of 500 and 3,000 nN, 2.6 nm for 3,500-nN loads, and 4 nm for 4,000-nN loads. The processed depths were mainly multiples of 0.8 and 1.0 nm. The 0.8-nm depth corresponded to the distance from the top surface of SiO4 to the cleavage plane of potassium, while the 1.0 nm depth corresponded to the distance from the top surface of SiO4 to that of the next SiO4 beneath it. The interface between K-SiO4 and SiO4-K was weak; therefore, the removed depths of 0.8 and 1.0 nm were predominant. Potassium atoms adhered on the SiO4 surface were easily removed by the sliding of the tip due to the low adhesion strength between potassium and SiO4. Therefore, a 1-nm-deep groove with an atomically smooth bottom surface was obtained by sliding the tip several times. Larger loads damaged the layers deeper than 1 nm.Figure 8

Bottom Line: By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds.Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level.It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

View Article: PubMed Central - PubMed

Affiliation: Department of Innovative System Engineering, Nippon Institute of Technology, Saitama, Japan.

ABSTRACT
By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds. Mica (muscovite), graphite, molybdenum disulfide (MoS2), and boron nitride have layered structures, and there is little interaction between the cleavage planes existing in the basal planes of these materials. Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level. This study reviews research evaluating the nanometer-scale wear and friction as well as the nanometer-scale mechanical processing of muscovite using atomic force microscopy (AFM). It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

No MeSH data available.


Related in: MedlinePlus