Limits...
Nanoprocessing of layered crystalline materials by atomic force microscopy.

Miyake S, Wang M - Nanoscale Res Lett (2015)

Bottom Line: By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds.Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level.It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

View Article: PubMed Central - PubMed

Affiliation: Department of Innovative System Engineering, Nippon Institute of Technology, Saitama, Japan.

ABSTRACT
By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds. Mica (muscovite), graphite, molybdenum disulfide (MoS2), and boron nitride have layered structures, and there is little interaction between the cleavage planes existing in the basal planes of these materials. Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level. This study reviews research evaluating the nanometer-scale wear and friction as well as the nanometer-scale mechanical processing of muscovite using atomic force microscopy (AFM). It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

No MeSH data available.


Related in: MedlinePlus

The wear groove of mica after 105sliding cycles. (a) Wear groove, (b) section profile A - Aʹ, (c) section profile B - Bʹ, and (d) atomic image of the bottom surface of the wear groove.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385287&req=5

Fig7: The wear groove of mica after 105sliding cycles. (a) Wear groove, (b) section profile A - Aʹ, (c) section profile B - Bʹ, and (d) atomic image of the bottom surface of the wear groove.

Mentions: After 105 sliding cycles, a wear groove (Figure 7a) was observed. The mean depth of the wear groove was determined from the section profiles shown in Figure 7b,c to be 1.0 nm. As seen in the crystal structure of muscovite shown in Figure 1, this value corresponds to the thickness of one periodic layer, which includes two SiO4 layers sandwiching O, Al, and OH layers, and the K cleavage plane. The surface topography of the bottom of the wear groove is also shown in Figure 7d. The periodicity of the pitch interval corresponding to the atomic image of the basal plane was observed to be approximately 0.5 nm. These results show that a new SiO4 plane located one periodic layer below the top layer appeared due to wear. The bottom was not atomistically smooth and was composed of several layers of atoms. These results indicate that worn atoms adhere to the bottom surface.Figure 7


Nanoprocessing of layered crystalline materials by atomic force microscopy.

Miyake S, Wang M - Nanoscale Res Lett (2015)

The wear groove of mica after 105sliding cycles. (a) Wear groove, (b) section profile A - Aʹ, (c) section profile B - Bʹ, and (d) atomic image of the bottom surface of the wear groove.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385287&req=5

Fig7: The wear groove of mica after 105sliding cycles. (a) Wear groove, (b) section profile A - Aʹ, (c) section profile B - Bʹ, and (d) atomic image of the bottom surface of the wear groove.
Mentions: After 105 sliding cycles, a wear groove (Figure 7a) was observed. The mean depth of the wear groove was determined from the section profiles shown in Figure 7b,c to be 1.0 nm. As seen in the crystal structure of muscovite shown in Figure 1, this value corresponds to the thickness of one periodic layer, which includes two SiO4 layers sandwiching O, Al, and OH layers, and the K cleavage plane. The surface topography of the bottom of the wear groove is also shown in Figure 7d. The periodicity of the pitch interval corresponding to the atomic image of the basal plane was observed to be approximately 0.5 nm. These results show that a new SiO4 plane located one periodic layer below the top layer appeared due to wear. The bottom was not atomistically smooth and was composed of several layers of atoms. These results indicate that worn atoms adhere to the bottom surface.Figure 7

Bottom Line: By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds.Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level.It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

View Article: PubMed Central - PubMed

Affiliation: Department of Innovative System Engineering, Nippon Institute of Technology, Saitama, Japan.

ABSTRACT
By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds. Mica (muscovite), graphite, molybdenum disulfide (MoS2), and boron nitride have layered structures, and there is little interaction between the cleavage planes existing in the basal planes of these materials. Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level. This study reviews research evaluating the nanometer-scale wear and friction as well as the nanometer-scale mechanical processing of muscovite using atomic force microscopy (AFM). It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

No MeSH data available.


Related in: MedlinePlus