Limits...
Nanoprocessing of layered crystalline materials by atomic force microscopy.

Miyake S, Wang M - Nanoscale Res Lett (2015)

Bottom Line: By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds.Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level.It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

View Article: PubMed Central - PubMed

Affiliation: Department of Innovative System Engineering, Nippon Institute of Technology, Saitama, Japan.

ABSTRACT
By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds. Mica (muscovite), graphite, molybdenum disulfide (MoS2), and boron nitride have layered structures, and there is little interaction between the cleavage planes existing in the basal planes of these materials. Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level. This study reviews research evaluating the nanometer-scale wear and friction as well as the nanometer-scale mechanical processing of muscovite using atomic force microscopy (AFM). It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

No MeSH data available.


Related in: MedlinePlus

Nanoindentaion curves of layered crystalline materials (mica, MoS2, and HOPG).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385287&req=5

Fig14: Nanoindentaion curves of layered crystalline materials (mica, MoS2, and HOPG).

Mentions: Nanoindentation tests of various multilayered crystalline specimens were conducted using a diamond indenter. Nanoindentation curves (force curves) showing the relationship between the load and the diamond indenter indentation depth are shown in Figure 14. The maximum indentation depth (hmax) is smallest for mica, slightly larger for MoS2, and largest for HOPG. The order of the maximum indentation depths of these layered materials corresponds to the order of the cleavage plane periodic length (Figure 4). From the nanoindentation curves, hardness and elastic modulus were evaluated from the tangential lines in the nanoindentation unloading curves. These lines were drawn from the points of maximum depth, and Young’s modulus was calculated from the slopes of the curves. Hardness was calculated on the basis of the intersection depth of those tangential lines and the x-axis [25,28].Figure 14


Nanoprocessing of layered crystalline materials by atomic force microscopy.

Miyake S, Wang M - Nanoscale Res Lett (2015)

Nanoindentaion curves of layered crystalline materials (mica, MoS2, and HOPG).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385287&req=5

Fig14: Nanoindentaion curves of layered crystalline materials (mica, MoS2, and HOPG).
Mentions: Nanoindentation tests of various multilayered crystalline specimens were conducted using a diamond indenter. Nanoindentation curves (force curves) showing the relationship between the load and the diamond indenter indentation depth are shown in Figure 14. The maximum indentation depth (hmax) is smallest for mica, slightly larger for MoS2, and largest for HOPG. The order of the maximum indentation depths of these layered materials corresponds to the order of the cleavage plane periodic length (Figure 4). From the nanoindentation curves, hardness and elastic modulus were evaluated from the tangential lines in the nanoindentation unloading curves. These lines were drawn from the points of maximum depth, and Young’s modulus was calculated from the slopes of the curves. Hardness was calculated on the basis of the intersection depth of those tangential lines and the x-axis [25,28].Figure 14

Bottom Line: By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds.Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level.It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

View Article: PubMed Central - PubMed

Affiliation: Department of Innovative System Engineering, Nippon Institute of Technology, Saitama, Japan.

ABSTRACT
By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds. Mica (muscovite), graphite, molybdenum disulfide (MoS2), and boron nitride have layered structures, and there is little interaction between the cleavage planes existing in the basal planes of these materials. Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level. This study reviews research evaluating the nanometer-scale wear and friction as well as the nanometer-scale mechanical processing of muscovite using atomic force microscopy (AFM). It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

No MeSH data available.


Related in: MedlinePlus