Limits...
Nanoprocessing of layered crystalline materials by atomic force microscopy.

Miyake S, Wang M - Nanoscale Res Lett (2015)

Bottom Line: By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds.Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level.It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

View Article: PubMed Central - PubMed

Affiliation: Department of Innovative System Engineering, Nippon Institute of Technology, Saitama, Japan.

ABSTRACT
By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds. Mica (muscovite), graphite, molybdenum disulfide (MoS2), and boron nitride have layered structures, and there is little interaction between the cleavage planes existing in the basal planes of these materials. Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level. This study reviews research evaluating the nanometer-scale wear and friction as well as the nanometer-scale mechanical processing of muscovite using atomic force microscopy (AFM). It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

No MeSH data available.


Related in: MedlinePlus

Processed four-step square groove profile. Inverted image (a) and sectional profile (b) of the four-step groove; atomic images of processed steps (c).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385287&req=5

Fig13: Processed four-step square groove profile. Inverted image (a) and sectional profile (b) of the four-step groove; atomic images of processed steps (c).

Mentions: Next, processing of the other three steps was performed. The inverted image of the atomic-scale four-step square groove is shown in Figure 13a. In these additional processing steps, the load was 130 nN. Each processing contained five scans, and the scan areas were 200 × 200 nm2, 150 × 150 nm2, and 50 × 50 nm2. Figure 13a is inverted to clearly show the bottoms of the groove; a four-step square groove was obtained. From the cross-sectional profile of this groove (Figure 13b), the depths of the 350 × 350 nm2, 200 × 200 nm2, 150 × 150 nm2, and 50 × 50 nm2 scan areas were 1 nm, 2 nm, 3 nm, and 4 nm, respectively. These results show that the processing depth at each step was 1 nm, corresponding to the distance between the cleavage planes.Figure 13


Nanoprocessing of layered crystalline materials by atomic force microscopy.

Miyake S, Wang M - Nanoscale Res Lett (2015)

Processed four-step square groove profile. Inverted image (a) and sectional profile (b) of the four-step groove; atomic images of processed steps (c).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385287&req=5

Fig13: Processed four-step square groove profile. Inverted image (a) and sectional profile (b) of the four-step groove; atomic images of processed steps (c).
Mentions: Next, processing of the other three steps was performed. The inverted image of the atomic-scale four-step square groove is shown in Figure 13a. In these additional processing steps, the load was 130 nN. Each processing contained five scans, and the scan areas were 200 × 200 nm2, 150 × 150 nm2, and 50 × 50 nm2. Figure 13a is inverted to clearly show the bottoms of the groove; a four-step square groove was obtained. From the cross-sectional profile of this groove (Figure 13b), the depths of the 350 × 350 nm2, 200 × 200 nm2, 150 × 150 nm2, and 50 × 50 nm2 scan areas were 1 nm, 2 nm, 3 nm, and 4 nm, respectively. These results show that the processing depth at each step was 1 nm, corresponding to the distance between the cleavage planes.Figure 13

Bottom Line: By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds.Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level.It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

View Article: PubMed Central - PubMed

Affiliation: Department of Innovative System Engineering, Nippon Institute of Technology, Saitama, Japan.

ABSTRACT
By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds. Mica (muscovite), graphite, molybdenum disulfide (MoS2), and boron nitride have layered structures, and there is little interaction between the cleavage planes existing in the basal planes of these materials. Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level. This study reviews research evaluating the nanometer-scale wear and friction as well as the nanometer-scale mechanical processing of muscovite using atomic force microscopy (AFM). It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

No MeSH data available.


Related in: MedlinePlus