Limits...
SPECT imaging of glioma with radioiodinated CLINDE: evidence from a mouse GL26 glioma model.

Tsartsalis S, Dumas N, Tournier BB, Pham T, Moulin-Sallanon M, Grégoire MC, Charnay Y, Millet P - EJNMMI Res (2015)

Bottom Line: SPECT images were compared to results of autoradiography, fluorescence microscopy, in situ nucleic acid hybridization, histology, and immunohistochemistry.Tracer uptake by the tumor is indeed 3.26 ± 0.32 times higher than that of the contralateral striatum, and 78% of the activity is displaceable by unlabeled CLINDE.Finally, TSPO is abundantly expressed by the GL26 cells.

View Article: PubMed Central - PubMed

Affiliation: Vulnerability Biomarkers Unit, Division of General Psychiatry, Department of Mental Health and Psychiatry, University Hospitals of Geneva, Chemin du Petit-Bel-Air 2, CH1225 Geneva, Chêne-Bourg Switzerland ; Department of Psychiatry, University of Geneva, 1 rue Michel-Servet, CH1211 Geneva 4, Switzerland.

ABSTRACT

Background: Recent research has demonstrated the potential of 18-kDa translocator protein (TSPO) to serve as a target for nuclear imaging of gliomas. The aim of this study was to evaluate SPECT imaging of GL26 mouse glioma using radioiodinated CLINDE, a TSPO-specific tracer.

Methods: GL26 cells, previously transfected with an enhanced green fluorescent protein (EGFP)-expressing lentivirus, were stereotactically implanted in the striatum of C57/Bl6 mice. At 4 weeks post-injection, dynamic SPECT scans with [(123)I]CLINDE were performed. A displacement study assessed specificity of tracer binding. SPECT images were compared to results of autoradiography, fluorescence microscopy, in situ nucleic acid hybridization, histology, and immunohistochemistry. Western blotting was performed to verify TSPO production by the tumor.

Results: Specific uptake of tracer by the tumor is observed with a high signal-to-noise ratio. Tracer uptake by the tumor is indeed 3.26 ± 0.32 times higher than that of the contralateral striatum, and 78% of the activity is displaceable by unlabeled CLINDE. Finally, TSPO is abundantly expressed by the GL26 cells.

Conclusions: The present study demonstrates the feasibility of [(123)I]CLINDE SPECT in translational studies and underlines its potential for clinical glioma SPECT imaging.

No MeSH data available.


Related in: MedlinePlus

Immunohistochemistry and Western blotting. (A) Immunohistochemical analysis of a brain section from a mouse showing TSPO expression by tumor cells. (B) Western blotting assay demonstrates TSPO expression from GL26 tumor tissue (gl) as compared to spleen tissue (sp), used as a positive control. Molecular weight of the bands corresponds to 18 kDa, as demonstrated with the use of a molecular weight probe (left-most column).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385259&req=5

Fig4: Immunohistochemistry and Western blotting. (A) Immunohistochemical analysis of a brain section from a mouse showing TSPO expression by tumor cells. (B) Western blotting assay demonstrates TSPO expression from GL26 tumor tissue (gl) as compared to spleen tissue (sp), used as a positive control. Molecular weight of the bands corresponds to 18 kDa, as demonstrated with the use of a molecular weight probe (left-most column).

Mentions: Finally, immunohistochemical analysis (Figure 4A) shows TSPO-immunoreactivity in most of the tumor cells. Western blotting (Figure 4B) analyses of tumor tissue extracts compared to spleen extracts (as positive control) show a similar 18-kDa band confirming the presence of TSPO protein in these cell populations.Figure 4


SPECT imaging of glioma with radioiodinated CLINDE: evidence from a mouse GL26 glioma model.

Tsartsalis S, Dumas N, Tournier BB, Pham T, Moulin-Sallanon M, Grégoire MC, Charnay Y, Millet P - EJNMMI Res (2015)

Immunohistochemistry and Western blotting. (A) Immunohistochemical analysis of a brain section from a mouse showing TSPO expression by tumor cells. (B) Western blotting assay demonstrates TSPO expression from GL26 tumor tissue (gl) as compared to spleen tissue (sp), used as a positive control. Molecular weight of the bands corresponds to 18 kDa, as demonstrated with the use of a molecular weight probe (left-most column).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385259&req=5

Fig4: Immunohistochemistry and Western blotting. (A) Immunohistochemical analysis of a brain section from a mouse showing TSPO expression by tumor cells. (B) Western blotting assay demonstrates TSPO expression from GL26 tumor tissue (gl) as compared to spleen tissue (sp), used as a positive control. Molecular weight of the bands corresponds to 18 kDa, as demonstrated with the use of a molecular weight probe (left-most column).
Mentions: Finally, immunohistochemical analysis (Figure 4A) shows TSPO-immunoreactivity in most of the tumor cells. Western blotting (Figure 4B) analyses of tumor tissue extracts compared to spleen extracts (as positive control) show a similar 18-kDa band confirming the presence of TSPO protein in these cell populations.Figure 4

Bottom Line: SPECT images were compared to results of autoradiography, fluorescence microscopy, in situ nucleic acid hybridization, histology, and immunohistochemistry.Tracer uptake by the tumor is indeed 3.26 ± 0.32 times higher than that of the contralateral striatum, and 78% of the activity is displaceable by unlabeled CLINDE.Finally, TSPO is abundantly expressed by the GL26 cells.

View Article: PubMed Central - PubMed

Affiliation: Vulnerability Biomarkers Unit, Division of General Psychiatry, Department of Mental Health and Psychiatry, University Hospitals of Geneva, Chemin du Petit-Bel-Air 2, CH1225 Geneva, Chêne-Bourg Switzerland ; Department of Psychiatry, University of Geneva, 1 rue Michel-Servet, CH1211 Geneva 4, Switzerland.

ABSTRACT

Background: Recent research has demonstrated the potential of 18-kDa translocator protein (TSPO) to serve as a target for nuclear imaging of gliomas. The aim of this study was to evaluate SPECT imaging of GL26 mouse glioma using radioiodinated CLINDE, a TSPO-specific tracer.

Methods: GL26 cells, previously transfected with an enhanced green fluorescent protein (EGFP)-expressing lentivirus, were stereotactically implanted in the striatum of C57/Bl6 mice. At 4 weeks post-injection, dynamic SPECT scans with [(123)I]CLINDE were performed. A displacement study assessed specificity of tracer binding. SPECT images were compared to results of autoradiography, fluorescence microscopy, in situ nucleic acid hybridization, histology, and immunohistochemistry. Western blotting was performed to verify TSPO production by the tumor.

Results: Specific uptake of tracer by the tumor is observed with a high signal-to-noise ratio. Tracer uptake by the tumor is indeed 3.26 ± 0.32 times higher than that of the contralateral striatum, and 78% of the activity is displaceable by unlabeled CLINDE. Finally, TSPO is abundantly expressed by the GL26 cells.

Conclusions: The present study demonstrates the feasibility of [(123)I]CLINDE SPECT in translational studies and underlines its potential for clinical glioma SPECT imaging.

No MeSH data available.


Related in: MedlinePlus