Limits...
AlGaN/GaN MISHEMTs with AlN gate dielectric grown by thermal ALD technique.

Liu XY, Zhao SX, Zhang LQ, Huang HF, Shi JS, Zhang CM, Lu HL, Wang PF, Zhang DW - Nanoscale Res Lett (2015)

Bottom Line: Recently, AlN plasma-enhanced atomic layer deposition (ALD) passivation technique had been proposed and investigated for suppressing the dynamic on-resistance degradation behavior of high-electron-mobility transistors (HEMTs).In this paper, a novel gate dielectric and passivation technique for GaN-on-Si AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MISHEMTs) is presented.The MISHEMTs with thermal ALD AlN exhibit enhanced on/off ratio, reduced channel sheet resistance, reduction of gate leakage by three orders of magnitude at a bias of 4 V, reduced threshold voltage hysteresis of 60 mV, and suppressed current collapse degradation.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, 220 Han Dan Road, Shanghai, 200433 China.

ABSTRACT
Recently, AlN plasma-enhanced atomic layer deposition (ALD) passivation technique had been proposed and investigated for suppressing the dynamic on-resistance degradation behavior of high-electron-mobility transistors (HEMTs). In this paper, a novel gate dielectric and passivation technique for GaN-on-Si AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MISHEMTs) is presented. This technique features the AlN thin film grown by thermal ALD at 400°C without plasma enhancement. A 10.6-nm AlN thin film was grown upon the surface of the HEMT serving as the gate dielectric under the gate electrode and as the passivation layer in the access region at the same time. The MISHEMTs with thermal ALD AlN exhibit enhanced on/off ratio, reduced channel sheet resistance, reduction of gate leakage by three orders of magnitude at a bias of 4 V, reduced threshold voltage hysteresis of 60 mV, and suppressed current collapse degradation.

No MeSH data available.


Related in: MedlinePlus

DC and gate turn-on pulse-modeIDS-VDScharacteristics (a) of AlN-MISHEMT and (b) of SGHEMT.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385223&req=5

Fig7: DC and gate turn-on pulse-modeIDS-VDScharacteristics (a) of AlN-MISHEMT and (b) of SGHEMT.

Mentions: To evaluate the degradation of the current collapse in SGHEMT and AlN-MISHEMT, Agilent 1525A signal pulse generator unit was used to perform turn-on pulse-mode measurement. The DC and gate turn-on pulse-mode IDS-VDS characteristics of AlN-MISHEMT and SGHEMT are shown in Figure 7. The gate voltage was pulsed from threshold voltage to 2 V with three different pulse widths of 10, 100, and 500 μs. The drain was pulsed from 0 V to VDS with a pulse width of 9 ms. The total pulse cycle is 10 ms. The current measurement was made at the peak of the gate pulse. As can be seen from Figure 7a, only a slight drain current degradation is observed in the 10-μs pulse measurement for AlN-MISHEMT. Almost no drain current degradation in 100- and 500-μs pulse measurements is observed for AlN-MISHEMT. For comparison, a large drain current collapse can be observed even with 500-μs pulse width in Figure 7b where SGHEMT measurement results are plotted. This comparison suggests that using thermal ALD, AlN can annihilate the surface states and effectively suppress the drain current collapse effect.Figure 7


AlGaN/GaN MISHEMTs with AlN gate dielectric grown by thermal ALD technique.

Liu XY, Zhao SX, Zhang LQ, Huang HF, Shi JS, Zhang CM, Lu HL, Wang PF, Zhang DW - Nanoscale Res Lett (2015)

DC and gate turn-on pulse-modeIDS-VDScharacteristics (a) of AlN-MISHEMT and (b) of SGHEMT.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385223&req=5

Fig7: DC and gate turn-on pulse-modeIDS-VDScharacteristics (a) of AlN-MISHEMT and (b) of SGHEMT.
Mentions: To evaluate the degradation of the current collapse in SGHEMT and AlN-MISHEMT, Agilent 1525A signal pulse generator unit was used to perform turn-on pulse-mode measurement. The DC and gate turn-on pulse-mode IDS-VDS characteristics of AlN-MISHEMT and SGHEMT are shown in Figure 7. The gate voltage was pulsed from threshold voltage to 2 V with three different pulse widths of 10, 100, and 500 μs. The drain was pulsed from 0 V to VDS with a pulse width of 9 ms. The total pulse cycle is 10 ms. The current measurement was made at the peak of the gate pulse. As can be seen from Figure 7a, only a slight drain current degradation is observed in the 10-μs pulse measurement for AlN-MISHEMT. Almost no drain current degradation in 100- and 500-μs pulse measurements is observed for AlN-MISHEMT. For comparison, a large drain current collapse can be observed even with 500-μs pulse width in Figure 7b where SGHEMT measurement results are plotted. This comparison suggests that using thermal ALD, AlN can annihilate the surface states and effectively suppress the drain current collapse effect.Figure 7

Bottom Line: Recently, AlN plasma-enhanced atomic layer deposition (ALD) passivation technique had been proposed and investigated for suppressing the dynamic on-resistance degradation behavior of high-electron-mobility transistors (HEMTs).In this paper, a novel gate dielectric and passivation technique for GaN-on-Si AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MISHEMTs) is presented.The MISHEMTs with thermal ALD AlN exhibit enhanced on/off ratio, reduced channel sheet resistance, reduction of gate leakage by three orders of magnitude at a bias of 4 V, reduced threshold voltage hysteresis of 60 mV, and suppressed current collapse degradation.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, 220 Han Dan Road, Shanghai, 200433 China.

ABSTRACT
Recently, AlN plasma-enhanced atomic layer deposition (ALD) passivation technique had been proposed and investigated for suppressing the dynamic on-resistance degradation behavior of high-electron-mobility transistors (HEMTs). In this paper, a novel gate dielectric and passivation technique for GaN-on-Si AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MISHEMTs) is presented. This technique features the AlN thin film grown by thermal ALD at 400°C without plasma enhancement. A 10.6-nm AlN thin film was grown upon the surface of the HEMT serving as the gate dielectric under the gate electrode and as the passivation layer in the access region at the same time. The MISHEMTs with thermal ALD AlN exhibit enhanced on/off ratio, reduced channel sheet resistance, reduction of gate leakage by three orders of magnitude at a bias of 4 V, reduced threshold voltage hysteresis of 60 mV, and suppressed current collapse degradation.

No MeSH data available.


Related in: MedlinePlus