Limits...
A new strategy for TiO2 whiskers mediated multi-mode cancer treatment.

Xu P, Wang R, Ouyang J, Chen B - Nanoscale Res Lett (2015)

Bottom Line: Traditional Chinese medicine (TCM) which functions as chemotherapeutic or adjuvantly chemotherapeutic agents has been drawing a great many eyeballs for its easy obtain and significant antitumor effects accompanied with less toxic and side effects.These results identify TiO2 Ws of good biocompatibility and photocatalytic activity.These results reveal that such modality combinations put forward a promising proposal in cancer therapy.

View Article: PubMed Central - PubMed

Affiliation: Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People's Republic of China.

ABSTRACT
Traditional Chinese medicine (TCM) which functions as chemotherapeutic or adjuvantly chemotherapeutic agents has been drawing a great many eyeballs for its easy obtain and significant antitumor effects accompanied with less toxic and side effects. PDT (photodynamic therapy) utilizes the fact that certain compounds coined as photosensitizers, when exposed to light of a specific wavelength, are capable of generating cytotoxic reactive oxygen species (ROS) such as hydroxyl radical, hydrogen peroxide, and superoxide to kill cancer cells. Combinations of cancer therapeutic modalities are studied to improve the efficacy of treatment. This study aimed to explore a new strategy of coupling of titanium dioxide whiskers (TiO2 Ws) with the anticancer drug gambogic acid (GA) in photodynamic therapy. The nanocomposites were coined as GA-TiO2. The combination of TiO2 Ws with GA induced a remarkable enhancement in antitumor activity estimated by MTT assay, nuclear DAPI staining, and flow cytometry. Furthermore, the possible signaling pathway was explored by reverse transcription polymerase chain reaction (RT-PCR) and Western blot assay. These results identify TiO2 Ws of good biocompatibility and photocatalytic activity. In human leukemia cells (K562 cells), TiO2 Ws could obviously increase the intracellular concentration of GA and enhance its potential antitumor efficiency, suggesting that TiO2 Ws could act as an efficient drug delivery carrier targeting GA to carcinoma cells. Moreover, photodynamic GA-TiO2 nanocomposites could induce an evident reinforcement in antitumor activity with UV illumination. These results reveal that such modality combinations put forward a promising proposal in cancer therapy.

No MeSH data available.


Related in: MedlinePlus

Effect of GA, TiO2Ws, and nanocomposites for K562 cells’ cycle under UV irradiation. Notes: effect of GA, TiO2 Ws, and GA-TiO2 nanocomposites for K562 cells’ cycle; (1) K562 cells; (2) K562 incubated with 10 μg/mL TiO2 Ws; (3) K562 incubated with 1 μg/mL GA; (4) K562 incubated with GA-TiO2 nanocomposites (UV) for 24 h.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385221&req=5

Fig8: Effect of GA, TiO2Ws, and nanocomposites for K562 cells’ cycle under UV irradiation. Notes: effect of GA, TiO2 Ws, and GA-TiO2 nanocomposites for K562 cells’ cycle; (1) K562 cells; (2) K562 incubated with 10 μg/mL TiO2 Ws; (3) K562 incubated with 1 μg/mL GA; (4) K562 incubated with GA-TiO2 nanocomposites (UV) for 24 h.

Mentions: To investigate the relative mechanism of different systems, cell cycle study was conducted. According to a previous report, GA can induce G0/G1 arrest and K562 apoptosis [26]. As shown in Additional file 1: Figure S2A, the ratio of the G0/G1 phase was approximately 39.90% in the blank experiments of K562 cells, whereas the ratio of the S phase was approximately 36.52%. These results indicate that TiO2 Ws had a small effect on the K562 cell cycle, with a ratio of 38.25% in the G0/G1 phase and 39.84% in the S phase (Additional file 1: Figure S2B). The ratio of the S phase decreased to 36.26%, whereas that of the G0/G1 phase increased to 46.88% (Additional file 1: Figure S2C) after the cells were cultured with GA for 24 h. When the K562 cells were cultured with GA-TiO2 nanocomposites for 24 h, the G0/G1 phase increased to 52.26% and the S phase decreased to 30.97% (Additional file 1: Figure S2D). The comparison of the effects of GA, TiO2 Ws, and GA-TiO2 nanocomposites on the K562 cell cycle was shown in Figure 8. An obvious arrest by approximately 5.38% for the G0/G1 phase was observed compared with the GA-treated system. Therefore, the GA-TiO2 nanocomposites could increase the cytotoxicity of GA, leading to the significant inhibitation of the growth of K562 cells by perturbation of the cycle signaling network (through the G0/G1 phase).Figure 8


A new strategy for TiO2 whiskers mediated multi-mode cancer treatment.

Xu P, Wang R, Ouyang J, Chen B - Nanoscale Res Lett (2015)

Effect of GA, TiO2Ws, and nanocomposites for K562 cells’ cycle under UV irradiation. Notes: effect of GA, TiO2 Ws, and GA-TiO2 nanocomposites for K562 cells’ cycle; (1) K562 cells; (2) K562 incubated with 10 μg/mL TiO2 Ws; (3) K562 incubated with 1 μg/mL GA; (4) K562 incubated with GA-TiO2 nanocomposites (UV) for 24 h.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385221&req=5

Fig8: Effect of GA, TiO2Ws, and nanocomposites for K562 cells’ cycle under UV irradiation. Notes: effect of GA, TiO2 Ws, and GA-TiO2 nanocomposites for K562 cells’ cycle; (1) K562 cells; (2) K562 incubated with 10 μg/mL TiO2 Ws; (3) K562 incubated with 1 μg/mL GA; (4) K562 incubated with GA-TiO2 nanocomposites (UV) for 24 h.
Mentions: To investigate the relative mechanism of different systems, cell cycle study was conducted. According to a previous report, GA can induce G0/G1 arrest and K562 apoptosis [26]. As shown in Additional file 1: Figure S2A, the ratio of the G0/G1 phase was approximately 39.90% in the blank experiments of K562 cells, whereas the ratio of the S phase was approximately 36.52%. These results indicate that TiO2 Ws had a small effect on the K562 cell cycle, with a ratio of 38.25% in the G0/G1 phase and 39.84% in the S phase (Additional file 1: Figure S2B). The ratio of the S phase decreased to 36.26%, whereas that of the G0/G1 phase increased to 46.88% (Additional file 1: Figure S2C) after the cells were cultured with GA for 24 h. When the K562 cells were cultured with GA-TiO2 nanocomposites for 24 h, the G0/G1 phase increased to 52.26% and the S phase decreased to 30.97% (Additional file 1: Figure S2D). The comparison of the effects of GA, TiO2 Ws, and GA-TiO2 nanocomposites on the K562 cell cycle was shown in Figure 8. An obvious arrest by approximately 5.38% for the G0/G1 phase was observed compared with the GA-treated system. Therefore, the GA-TiO2 nanocomposites could increase the cytotoxicity of GA, leading to the significant inhibitation of the growth of K562 cells by perturbation of the cycle signaling network (through the G0/G1 phase).Figure 8

Bottom Line: Traditional Chinese medicine (TCM) which functions as chemotherapeutic or adjuvantly chemotherapeutic agents has been drawing a great many eyeballs for its easy obtain and significant antitumor effects accompanied with less toxic and side effects.These results identify TiO2 Ws of good biocompatibility and photocatalytic activity.These results reveal that such modality combinations put forward a promising proposal in cancer therapy.

View Article: PubMed Central - PubMed

Affiliation: Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People's Republic of China.

ABSTRACT
Traditional Chinese medicine (TCM) which functions as chemotherapeutic or adjuvantly chemotherapeutic agents has been drawing a great many eyeballs for its easy obtain and significant antitumor effects accompanied with less toxic and side effects. PDT (photodynamic therapy) utilizes the fact that certain compounds coined as photosensitizers, when exposed to light of a specific wavelength, are capable of generating cytotoxic reactive oxygen species (ROS) such as hydroxyl radical, hydrogen peroxide, and superoxide to kill cancer cells. Combinations of cancer therapeutic modalities are studied to improve the efficacy of treatment. This study aimed to explore a new strategy of coupling of titanium dioxide whiskers (TiO2 Ws) with the anticancer drug gambogic acid (GA) in photodynamic therapy. The nanocomposites were coined as GA-TiO2. The combination of TiO2 Ws with GA induced a remarkable enhancement in antitumor activity estimated by MTT assay, nuclear DAPI staining, and flow cytometry. Furthermore, the possible signaling pathway was explored by reverse transcription polymerase chain reaction (RT-PCR) and Western blot assay. These results identify TiO2 Ws of good biocompatibility and photocatalytic activity. In human leukemia cells (K562 cells), TiO2 Ws could obviously increase the intracellular concentration of GA and enhance its potential antitumor efficiency, suggesting that TiO2 Ws could act as an efficient drug delivery carrier targeting GA to carcinoma cells. Moreover, photodynamic GA-TiO2 nanocomposites could induce an evident reinforcement in antitumor activity with UV illumination. These results reveal that such modality combinations put forward a promising proposal in cancer therapy.

No MeSH data available.


Related in: MedlinePlus