Limits...
A new strategy for TiO2 whiskers mediated multi-mode cancer treatment.

Xu P, Wang R, Ouyang J, Chen B - Nanoscale Res Lett (2015)

Bottom Line: Traditional Chinese medicine (TCM) which functions as chemotherapeutic or adjuvantly chemotherapeutic agents has been drawing a great many eyeballs for its easy obtain and significant antitumor effects accompanied with less toxic and side effects.These results identify TiO2 Ws of good biocompatibility and photocatalytic activity.These results reveal that such modality combinations put forward a promising proposal in cancer therapy.

View Article: PubMed Central - PubMed

Affiliation: Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People's Republic of China.

ABSTRACT
Traditional Chinese medicine (TCM) which functions as chemotherapeutic or adjuvantly chemotherapeutic agents has been drawing a great many eyeballs for its easy obtain and significant antitumor effects accompanied with less toxic and side effects. PDT (photodynamic therapy) utilizes the fact that certain compounds coined as photosensitizers, when exposed to light of a specific wavelength, are capable of generating cytotoxic reactive oxygen species (ROS) such as hydroxyl radical, hydrogen peroxide, and superoxide to kill cancer cells. Combinations of cancer therapeutic modalities are studied to improve the efficacy of treatment. This study aimed to explore a new strategy of coupling of titanium dioxide whiskers (TiO2 Ws) with the anticancer drug gambogic acid (GA) in photodynamic therapy. The nanocomposites were coined as GA-TiO2. The combination of TiO2 Ws with GA induced a remarkable enhancement in antitumor activity estimated by MTT assay, nuclear DAPI staining, and flow cytometry. Furthermore, the possible signaling pathway was explored by reverse transcription polymerase chain reaction (RT-PCR) and Western blot assay. These results identify TiO2 Ws of good biocompatibility and photocatalytic activity. In human leukemia cells (K562 cells), TiO2 Ws could obviously increase the intracellular concentration of GA and enhance its potential antitumor efficiency, suggesting that TiO2 Ws could act as an efficient drug delivery carrier targeting GA to carcinoma cells. Moreover, photodynamic GA-TiO2 nanocomposites could induce an evident reinforcement in antitumor activity with UV illumination. These results reveal that such modality combinations put forward a promising proposal in cancer therapy.

No MeSH data available.


Related in: MedlinePlus

Characterization of TiO2Ws. Notes: (A) SEM image (left) and (B) diameter distribution (right). (C) Typical TEM micrograph of a region (left), and (D) high magnification of image (right).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385221&req=5

Fig1: Characterization of TiO2Ws. Notes: (A) SEM image (left) and (B) diameter distribution (right). (C) Typical TEM micrograph of a region (left), and (D) high magnification of image (right).

Mentions: The typical TEM images of the GA-TiO2 nanocomposites are shown in Figure 1. The TiO2 nanostructures exhibited a needle-like morphology, with an average size of 81.7 nm approximately in width and 200 to 1,000 nm in length. These data indicate that TiO2 Ws have the uniform diameter distribution. The crystalline nature of the as-prepared TiO2 was analyzed based on its X-ray diffraction (XRD) pattern as displayed in Figure 2. The diffraction peaks were quite consistent with those of bulk TiO2, which could be indexed as TiO2 (JCPDF 35–0088). Sharp peaks were observed, suggesting that the nanostructures possessed large crystalline domains and a high degree of crystallinity. No other peaks related to impurities were detected in the XRD patterns, confirming the purity of the synthesized TiO2 Ws. Nanomaterials could be divided into four kinds of types including nanoparticles, nanofibers, nanofilm, and nanobulk. TiO2 nanofibers had better properties of photocatalysis, suggestive of biomedical application in cancer therapy [16]. TiO2 Ws which we prepared is a kind of chopped nanofiber with a high degree of monocrystalline. These findings identify the former one as a better photocatalytic agent.Figure 1


A new strategy for TiO2 whiskers mediated multi-mode cancer treatment.

Xu P, Wang R, Ouyang J, Chen B - Nanoscale Res Lett (2015)

Characterization of TiO2Ws. Notes: (A) SEM image (left) and (B) diameter distribution (right). (C) Typical TEM micrograph of a region (left), and (D) high magnification of image (right).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385221&req=5

Fig1: Characterization of TiO2Ws. Notes: (A) SEM image (left) and (B) diameter distribution (right). (C) Typical TEM micrograph of a region (left), and (D) high magnification of image (right).
Mentions: The typical TEM images of the GA-TiO2 nanocomposites are shown in Figure 1. The TiO2 nanostructures exhibited a needle-like morphology, with an average size of 81.7 nm approximately in width and 200 to 1,000 nm in length. These data indicate that TiO2 Ws have the uniform diameter distribution. The crystalline nature of the as-prepared TiO2 was analyzed based on its X-ray diffraction (XRD) pattern as displayed in Figure 2. The diffraction peaks were quite consistent with those of bulk TiO2, which could be indexed as TiO2 (JCPDF 35–0088). Sharp peaks were observed, suggesting that the nanostructures possessed large crystalline domains and a high degree of crystallinity. No other peaks related to impurities were detected in the XRD patterns, confirming the purity of the synthesized TiO2 Ws. Nanomaterials could be divided into four kinds of types including nanoparticles, nanofibers, nanofilm, and nanobulk. TiO2 nanofibers had better properties of photocatalysis, suggestive of biomedical application in cancer therapy [16]. TiO2 Ws which we prepared is a kind of chopped nanofiber with a high degree of monocrystalline. These findings identify the former one as a better photocatalytic agent.Figure 1

Bottom Line: Traditional Chinese medicine (TCM) which functions as chemotherapeutic or adjuvantly chemotherapeutic agents has been drawing a great many eyeballs for its easy obtain and significant antitumor effects accompanied with less toxic and side effects.These results identify TiO2 Ws of good biocompatibility and photocatalytic activity.These results reveal that such modality combinations put forward a promising proposal in cancer therapy.

View Article: PubMed Central - PubMed

Affiliation: Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People's Republic of China.

ABSTRACT
Traditional Chinese medicine (TCM) which functions as chemotherapeutic or adjuvantly chemotherapeutic agents has been drawing a great many eyeballs for its easy obtain and significant antitumor effects accompanied with less toxic and side effects. PDT (photodynamic therapy) utilizes the fact that certain compounds coined as photosensitizers, when exposed to light of a specific wavelength, are capable of generating cytotoxic reactive oxygen species (ROS) such as hydroxyl radical, hydrogen peroxide, and superoxide to kill cancer cells. Combinations of cancer therapeutic modalities are studied to improve the efficacy of treatment. This study aimed to explore a new strategy of coupling of titanium dioxide whiskers (TiO2 Ws) with the anticancer drug gambogic acid (GA) in photodynamic therapy. The nanocomposites were coined as GA-TiO2. The combination of TiO2 Ws with GA induced a remarkable enhancement in antitumor activity estimated by MTT assay, nuclear DAPI staining, and flow cytometry. Furthermore, the possible signaling pathway was explored by reverse transcription polymerase chain reaction (RT-PCR) and Western blot assay. These results identify TiO2 Ws of good biocompatibility and photocatalytic activity. In human leukemia cells (K562 cells), TiO2 Ws could obviously increase the intracellular concentration of GA and enhance its potential antitumor efficiency, suggesting that TiO2 Ws could act as an efficient drug delivery carrier targeting GA to carcinoma cells. Moreover, photodynamic GA-TiO2 nanocomposites could induce an evident reinforcement in antitumor activity with UV illumination. These results reveal that such modality combinations put forward a promising proposal in cancer therapy.

No MeSH data available.


Related in: MedlinePlus