Limits...
Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange.

Basahel SN, Ali TT, Mokhtar M, Narasimharao K - Nanoscale Res Lett (2015)

Bottom Line: The structural and textural properties of the samples were analyzed by X-ray diffraction, Raman spectroscopy, TEM, UV-vis, X-ray photoelectron spectroscopy (XPS), and N2 adsorption measurements.The characterization results revealed that monoclinic ZrO2 nanoparticles possessed high crystallinity and mesopores with diameter of 100 Å.The higher activity of the monoclinic ZrO2 sample for the photocatalytic degradation of methyl orange can be attributed to the combining effects of factors including the presence of small amount of oxygen-deficient zirconium oxide phase, high crystallinity, large pores, and high density of surface hydroxyl groups.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box, 80203, Jeddah, 21589 Kingdom of Saudi Arabia.

ABSTRACT
Nanosized ZrO2 powders with near pure monoclinic, tetragonal, and cubic structures synthesized by various methods were used as catalysts for photocatalytic degradation of methyl orange. The structural and textural properties of the samples were analyzed by X-ray diffraction, Raman spectroscopy, TEM, UV-vis, X-ray photoelectron spectroscopy (XPS), and N2 adsorption measurements. The performance of synthesized ZrO2 nanoparticles in the photocatalytic degradation of methyl orange under UV light irradiation was evaluated. The photocatalytic activity of the pure monoclinic ZrO2 sample is higher than that of the tetragonal and cubic ZrO2 samples under optimum identical conditions. The characterization results revealed that monoclinic ZrO2 nanoparticles possessed high crystallinity and mesopores with diameter of 100 Å. The higher activity of the monoclinic ZrO2 sample for the photocatalytic degradation of methyl orange can be attributed to the combining effects of factors including the presence of small amount of oxygen-deficient zirconium oxide phase, high crystallinity, large pores, and high density of surface hydroxyl groups.

No MeSH data available.


Related in: MedlinePlus

TEM images of (A)m-ZrO2(B)t-ZrO2(C)c-ZrO2and HRTEM images of (D)m-ZrO2(E)t-ZrO2(F)c-ZrO2.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385125&req=5

Fig3: TEM images of (A)m-ZrO2(B)t-ZrO2(C)c-ZrO2and HRTEM images of (D)m-ZrO2(E)t-ZrO2(F)c-ZrO2.

Mentions: The TEM images for the m-ZrO2, t-ZrO2, and c-ZrO2 samples are shown in Figure 3A,B,C, respectively. Tightly packed dumbbell-shaped particles can be observed in the low magnification TEM images of three samples. The average particle size for the m-ZrO2, t-ZrO2, and c-ZrO2 samples was found to be 24, 18, and 8 nm, respectively. There are conflicting reports in the literature regarding the phase structure of ZrO2 particles in smaller size (less than 10 nm). Some authors reported that cubic ZrO2 phase exists as fine nanoparticles [32], and few other researchers reported that tetragonal ZrO2 phase exists in smaller size than cubic phase [33]. However, in the present work, it is clear that in the c-ZrO2 sample, pure cubic ZrO2 phase possessed smaller particles size than the t-ZrO2 sample (pure tetragonal).Figure 3


Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange.

Basahel SN, Ali TT, Mokhtar M, Narasimharao K - Nanoscale Res Lett (2015)

TEM images of (A)m-ZrO2(B)t-ZrO2(C)c-ZrO2and HRTEM images of (D)m-ZrO2(E)t-ZrO2(F)c-ZrO2.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385125&req=5

Fig3: TEM images of (A)m-ZrO2(B)t-ZrO2(C)c-ZrO2and HRTEM images of (D)m-ZrO2(E)t-ZrO2(F)c-ZrO2.
Mentions: The TEM images for the m-ZrO2, t-ZrO2, and c-ZrO2 samples are shown in Figure 3A,B,C, respectively. Tightly packed dumbbell-shaped particles can be observed in the low magnification TEM images of three samples. The average particle size for the m-ZrO2, t-ZrO2, and c-ZrO2 samples was found to be 24, 18, and 8 nm, respectively. There are conflicting reports in the literature regarding the phase structure of ZrO2 particles in smaller size (less than 10 nm). Some authors reported that cubic ZrO2 phase exists as fine nanoparticles [32], and few other researchers reported that tetragonal ZrO2 phase exists in smaller size than cubic phase [33]. However, in the present work, it is clear that in the c-ZrO2 sample, pure cubic ZrO2 phase possessed smaller particles size than the t-ZrO2 sample (pure tetragonal).Figure 3

Bottom Line: The structural and textural properties of the samples were analyzed by X-ray diffraction, Raman spectroscopy, TEM, UV-vis, X-ray photoelectron spectroscopy (XPS), and N2 adsorption measurements.The characterization results revealed that monoclinic ZrO2 nanoparticles possessed high crystallinity and mesopores with diameter of 100 Å.The higher activity of the monoclinic ZrO2 sample for the photocatalytic degradation of methyl orange can be attributed to the combining effects of factors including the presence of small amount of oxygen-deficient zirconium oxide phase, high crystallinity, large pores, and high density of surface hydroxyl groups.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box, 80203, Jeddah, 21589 Kingdom of Saudi Arabia.

ABSTRACT
Nanosized ZrO2 powders with near pure monoclinic, tetragonal, and cubic structures synthesized by various methods were used as catalysts for photocatalytic degradation of methyl orange. The structural and textural properties of the samples were analyzed by X-ray diffraction, Raman spectroscopy, TEM, UV-vis, X-ray photoelectron spectroscopy (XPS), and N2 adsorption measurements. The performance of synthesized ZrO2 nanoparticles in the photocatalytic degradation of methyl orange under UV light irradiation was evaluated. The photocatalytic activity of the pure monoclinic ZrO2 sample is higher than that of the tetragonal and cubic ZrO2 samples under optimum identical conditions. The characterization results revealed that monoclinic ZrO2 nanoparticles possessed high crystallinity and mesopores with diameter of 100 Å. The higher activity of the monoclinic ZrO2 sample for the photocatalytic degradation of methyl orange can be attributed to the combining effects of factors including the presence of small amount of oxygen-deficient zirconium oxide phase, high crystallinity, large pores, and high density of surface hydroxyl groups.

No MeSH data available.


Related in: MedlinePlus