Limits...
Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange.

Basahel SN, Ali TT, Mokhtar M, Narasimharao K - Nanoscale Res Lett (2015)

Bottom Line: The structural and textural properties of the samples were analyzed by X-ray diffraction, Raman spectroscopy, TEM, UV-vis, X-ray photoelectron spectroscopy (XPS), and N2 adsorption measurements.The photocatalytic activity of the pure monoclinic ZrO2 sample is higher than that of the tetragonal and cubic ZrO2 samples under optimum identical conditions.The higher activity of the monoclinic ZrO2 sample for the photocatalytic degradation of methyl orange can be attributed to the combining effects of factors including the presence of small amount of oxygen-deficient zirconium oxide phase, high crystallinity, large pores, and high density of surface hydroxyl groups.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box, 80203, Jeddah, 21589 Kingdom of Saudi Arabia.

ABSTRACT
Nanosized ZrO2 powders with near pure monoclinic, tetragonal, and cubic structures synthesized by various methods were used as catalysts for photocatalytic degradation of methyl orange. The structural and textural properties of the samples were analyzed by X-ray diffraction, Raman spectroscopy, TEM, UV-vis, X-ray photoelectron spectroscopy (XPS), and N2 adsorption measurements. The performance of synthesized ZrO2 nanoparticles in the photocatalytic degradation of methyl orange under UV light irradiation was evaluated. The photocatalytic activity of the pure monoclinic ZrO2 sample is higher than that of the tetragonal and cubic ZrO2 samples under optimum identical conditions. The characterization results revealed that monoclinic ZrO2 nanoparticles possessed high crystallinity and mesopores with diameter of 100 Å. The higher activity of the monoclinic ZrO2 sample for the photocatalytic degradation of methyl orange can be attributed to the combining effects of factors including the presence of small amount of oxygen-deficient zirconium oxide phase, high crystallinity, large pores, and high density of surface hydroxyl groups.

No MeSH data available.


Related in: MedlinePlus

XRD patterns of the different zirconia samples.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385125&req=5

Fig1: XRD patterns of the different zirconia samples.

Mentions: The XRD patterns of synthesized m-ZrO2, t-ZrO2, and c-ZrO2 samples and corresponding JCPDS reference patterns are shown in Figure 1. XRD pattern of the m-ZrO2 sample showed intensive diffraction patterns at 2θ = 24.2°, 28.2°, 31.4°, and 34.3° which are corresponding to monoclinic ZrO2 crystal phase [JCPDS 37-1484]. It is observed that there is one major peak at 2θ = 25.4° and another small peak at 22°, which are not indexed for monoclinic ZrO2 phase. These peaks can be indexed to the oxygen-deficient zirconium oxide, ZrO0.35 phase [JCPDS; 17-0385, hexagonal, space group P6322]. To determine the purity of monoclinic phase of the m-ZrO2 sample, volume percent of monoclinic and oxygen-deficient zirconium oxide phase present in the m-ZrO2 sample was determined from the integrated intensities of the diffraction peaks (−111) (111) of m-ZrO2 at 2θ = 28.5° and 31.5°, respectively, and the diffraction line (101) of oxygen deficient ZrO2 at 2θ = 25.4°. We used the expressions (3) and (4) reported in the literature [24].Figure 1


Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange.

Basahel SN, Ali TT, Mokhtar M, Narasimharao K - Nanoscale Res Lett (2015)

XRD patterns of the different zirconia samples.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385125&req=5

Fig1: XRD patterns of the different zirconia samples.
Mentions: The XRD patterns of synthesized m-ZrO2, t-ZrO2, and c-ZrO2 samples and corresponding JCPDS reference patterns are shown in Figure 1. XRD pattern of the m-ZrO2 sample showed intensive diffraction patterns at 2θ = 24.2°, 28.2°, 31.4°, and 34.3° which are corresponding to monoclinic ZrO2 crystal phase [JCPDS 37-1484]. It is observed that there is one major peak at 2θ = 25.4° and another small peak at 22°, which are not indexed for monoclinic ZrO2 phase. These peaks can be indexed to the oxygen-deficient zirconium oxide, ZrO0.35 phase [JCPDS; 17-0385, hexagonal, space group P6322]. To determine the purity of monoclinic phase of the m-ZrO2 sample, volume percent of monoclinic and oxygen-deficient zirconium oxide phase present in the m-ZrO2 sample was determined from the integrated intensities of the diffraction peaks (−111) (111) of m-ZrO2 at 2θ = 28.5° and 31.5°, respectively, and the diffraction line (101) of oxygen deficient ZrO2 at 2θ = 25.4°. We used the expressions (3) and (4) reported in the literature [24].Figure 1

Bottom Line: The structural and textural properties of the samples were analyzed by X-ray diffraction, Raman spectroscopy, TEM, UV-vis, X-ray photoelectron spectroscopy (XPS), and N2 adsorption measurements.The photocatalytic activity of the pure monoclinic ZrO2 sample is higher than that of the tetragonal and cubic ZrO2 samples under optimum identical conditions.The higher activity of the monoclinic ZrO2 sample for the photocatalytic degradation of methyl orange can be attributed to the combining effects of factors including the presence of small amount of oxygen-deficient zirconium oxide phase, high crystallinity, large pores, and high density of surface hydroxyl groups.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box, 80203, Jeddah, 21589 Kingdom of Saudi Arabia.

ABSTRACT
Nanosized ZrO2 powders with near pure monoclinic, tetragonal, and cubic structures synthesized by various methods were used as catalysts for photocatalytic degradation of methyl orange. The structural and textural properties of the samples were analyzed by X-ray diffraction, Raman spectroscopy, TEM, UV-vis, X-ray photoelectron spectroscopy (XPS), and N2 adsorption measurements. The performance of synthesized ZrO2 nanoparticles in the photocatalytic degradation of methyl orange under UV light irradiation was evaluated. The photocatalytic activity of the pure monoclinic ZrO2 sample is higher than that of the tetragonal and cubic ZrO2 samples under optimum identical conditions. The characterization results revealed that monoclinic ZrO2 nanoparticles possessed high crystallinity and mesopores with diameter of 100 Å. The higher activity of the monoclinic ZrO2 sample for the photocatalytic degradation of methyl orange can be attributed to the combining effects of factors including the presence of small amount of oxygen-deficient zirconium oxide phase, high crystallinity, large pores, and high density of surface hydroxyl groups.

No MeSH data available.


Related in: MedlinePlus