Limits...
Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone.

Jin C, Liu B, Lei Z, Sun J - Nanoscale Res Lett (2015)

Bottom Line: The amorphous TiO2 film crystallizes to anatase TiO2 phase with annealing temperature ranged from 300°C to 1,100°C in N2 atmosphere, while the anatase TiO2 film transforms into rutile phase at a temperature of 1,000°C.Photoluminescence from anatase TiO2 films contains a red band at 600 nm and a green band at around 515 nm.A blue shift of the photoluminescence spectra reveals that the defects of under-coordinated Ti(3+) ions transform to surface oxygen vacancies in the anatase TiO2 film annealing at temperature from 800°C to 900°C in N2 atmosphere.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Weijin Road 94, Tianjin, 300071 China.

ABSTRACT
TiO2 films were grown on silicon substrates by atomic layer deposition (ALD) using tetrakis-dimethylamino titanium and ozone. Amorphous TiO2 film was deposited at a low substrate temperature of 165°C, and anatase TiO2 film was grown at 250°C. The amorphous TiO2 film crystallizes to anatase TiO2 phase with annealing temperature ranged from 300°C to 1,100°C in N2 atmosphere, while the anatase TiO2 film transforms into rutile phase at a temperature of 1,000°C. Photoluminescence from anatase TiO2 films contains a red band at 600 nm and a green band at around 515 nm. The red band exhibits a strong correlation with defects of the under-coordinated Ti(3+) ions, and the green band shows a close relationship with the oxygen vacancies on (101) oriented anatase crystal surface. A blue shift of the photoluminescence spectra reveals that the defects of under-coordinated Ti(3+) ions transform to surface oxygen vacancies in the anatase TiO2 film annealing at temperature from 800°C to 900°C in N2 atmosphere.

No MeSH data available.


XRD patterns of TiO2films after annealing at different temperatures in N2atmosphere. The as-grown TiO2 film is anatase deposited at a substrate temperature of 250°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385123&req=5

Fig7: XRD patterns of TiO2films after annealing at different temperatures in N2atmosphere. The as-grown TiO2 film is anatase deposited at a substrate temperature of 250°C.

Mentions: Figure 7 is the XRD patterns from the TiO2 films after annealing at different temperatures in N2 atmosphere for 1 h, in which the as-grown TiO2 film was initially in anatase phase deposited at a substrate temperature of 250°C. Initially, the annealed TiO2 films still keep anatase phase in a wide annealing temperature range from 400°C to 900°C, and then, a clear transition from anatase to rutile phase was observed in the annealing temperature range from 950°C to 1,000°C. Finally, the anatase films change to rutile TiO2 phase at elevated annealing temperatures above 1,000°C.Figure 7


Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone.

Jin C, Liu B, Lei Z, Sun J - Nanoscale Res Lett (2015)

XRD patterns of TiO2films after annealing at different temperatures in N2atmosphere. The as-grown TiO2 film is anatase deposited at a substrate temperature of 250°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385123&req=5

Fig7: XRD patterns of TiO2films after annealing at different temperatures in N2atmosphere. The as-grown TiO2 film is anatase deposited at a substrate temperature of 250°C.
Mentions: Figure 7 is the XRD patterns from the TiO2 films after annealing at different temperatures in N2 atmosphere for 1 h, in which the as-grown TiO2 film was initially in anatase phase deposited at a substrate temperature of 250°C. Initially, the annealed TiO2 films still keep anatase phase in a wide annealing temperature range from 400°C to 900°C, and then, a clear transition from anatase to rutile phase was observed in the annealing temperature range from 950°C to 1,000°C. Finally, the anatase films change to rutile TiO2 phase at elevated annealing temperatures above 1,000°C.Figure 7

Bottom Line: The amorphous TiO2 film crystallizes to anatase TiO2 phase with annealing temperature ranged from 300°C to 1,100°C in N2 atmosphere, while the anatase TiO2 film transforms into rutile phase at a temperature of 1,000°C.Photoluminescence from anatase TiO2 films contains a red band at 600 nm and a green band at around 515 nm.A blue shift of the photoluminescence spectra reveals that the defects of under-coordinated Ti(3+) ions transform to surface oxygen vacancies in the anatase TiO2 film annealing at temperature from 800°C to 900°C in N2 atmosphere.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Weijin Road 94, Tianjin, 300071 China.

ABSTRACT
TiO2 films were grown on silicon substrates by atomic layer deposition (ALD) using tetrakis-dimethylamino titanium and ozone. Amorphous TiO2 film was deposited at a low substrate temperature of 165°C, and anatase TiO2 film was grown at 250°C. The amorphous TiO2 film crystallizes to anatase TiO2 phase with annealing temperature ranged from 300°C to 1,100°C in N2 atmosphere, while the anatase TiO2 film transforms into rutile phase at a temperature of 1,000°C. Photoluminescence from anatase TiO2 films contains a red band at 600 nm and a green band at around 515 nm. The red band exhibits a strong correlation with defects of the under-coordinated Ti(3+) ions, and the green band shows a close relationship with the oxygen vacancies on (101) oriented anatase crystal surface. A blue shift of the photoluminescence spectra reveals that the defects of under-coordinated Ti(3+) ions transform to surface oxygen vacancies in the anatase TiO2 film annealing at temperature from 800°C to 900°C in N2 atmosphere.

No MeSH data available.