Limits...
Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone.

Jin C, Liu B, Lei Z, Sun J - Nanoscale Res Lett (2015)

Bottom Line: The amorphous TiO2 film crystallizes to anatase TiO2 phase with annealing temperature ranged from 300°C to 1,100°C in N2 atmosphere, while the anatase TiO2 film transforms into rutile phase at a temperature of 1,000°C.Photoluminescence from anatase TiO2 films contains a red band at 600 nm and a green band at around 515 nm.A blue shift of the photoluminescence spectra reveals that the defects of under-coordinated Ti(3+) ions transform to surface oxygen vacancies in the anatase TiO2 film annealing at temperature from 800°C to 900°C in N2 atmosphere.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Weijin Road 94, Tianjin, 300071 China.

ABSTRACT
TiO2 films were grown on silicon substrates by atomic layer deposition (ALD) using tetrakis-dimethylamino titanium and ozone. Amorphous TiO2 film was deposited at a low substrate temperature of 165°C, and anatase TiO2 film was grown at 250°C. The amorphous TiO2 film crystallizes to anatase TiO2 phase with annealing temperature ranged from 300°C to 1,100°C in N2 atmosphere, while the anatase TiO2 film transforms into rutile phase at a temperature of 1,000°C. Photoluminescence from anatase TiO2 films contains a red band at 600 nm and a green band at around 515 nm. The red band exhibits a strong correlation with defects of the under-coordinated Ti(3+) ions, and the green band shows a close relationship with the oxygen vacancies on (101) oriented anatase crystal surface. A blue shift of the photoluminescence spectra reveals that the defects of under-coordinated Ti(3+) ions transform to surface oxygen vacancies in the anatase TiO2 film annealing at temperature from 800°C to 900°C in N2 atmosphere.

No MeSH data available.


Calculated concentration of Ti3+and the integrated PL intensity. The calculated concentration of Ti3+ from XPS analysis (black triangles) and the integrated PL intensity from the red (red squares) and green (green dots) bands is derived from the Gaussian fitting of the XPS and PL spectra of the TiO2 films after annealing at different temperatures. The solid lines are for a guide of eyes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385123&req=5

Fig10: Calculated concentration of Ti3+and the integrated PL intensity. The calculated concentration of Ti3+ from XPS analysis (black triangles) and the integrated PL intensity from the red (red squares) and green (green dots) bands is derived from the Gaussian fitting of the XPS and PL spectra of the TiO2 films after annealing at different temperatures. The solid lines are for a guide of eyes.

Mentions: In order to clarify the correlation between the photoluminescence and the defects related to the under-coordinated Ti3+ ions in the annealed TiO2 films, the integrated PL intensity of the red and green peaks as well as the percentage of Ti3+ in the films are plotted together as functions of the annealing temperature in Figure 10, in which the integrated PL intensity of the red and green peaks is derived by multiple-peak Gaussian fitting of the PL spectra in Figure 6. The integrated intensity of the green band was low at annealing temperature below 700°C, it increases from 700°C to 900°C, and then saturated at annealing temperature above 900°C. No obvious correlation was observed between the PL intensity of the green band and the Ti3+ ion concentration. The dependence of the integrated PL intensity of the red band on the annealing temperature shows a thermal behavior quite similar to the change of the Ti3+ ion concentration. Both of them increased with increasing annealing temperature from 300°C to 800°C, after reaches a maximum at 800°C and then decreases dramatically at annealing temperature varied from 800°C to 900°C. This similarity suggests that the red band may have a strong correlation with the defects associated with the under-coordinated Ti3+ ions in anatase TiO2.Figure 10


Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone.

Jin C, Liu B, Lei Z, Sun J - Nanoscale Res Lett (2015)

Calculated concentration of Ti3+and the integrated PL intensity. The calculated concentration of Ti3+ from XPS analysis (black triangles) and the integrated PL intensity from the red (red squares) and green (green dots) bands is derived from the Gaussian fitting of the XPS and PL spectra of the TiO2 films after annealing at different temperatures. The solid lines are for a guide of eyes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385123&req=5

Fig10: Calculated concentration of Ti3+and the integrated PL intensity. The calculated concentration of Ti3+ from XPS analysis (black triangles) and the integrated PL intensity from the red (red squares) and green (green dots) bands is derived from the Gaussian fitting of the XPS and PL spectra of the TiO2 films after annealing at different temperatures. The solid lines are for a guide of eyes.
Mentions: In order to clarify the correlation between the photoluminescence and the defects related to the under-coordinated Ti3+ ions in the annealed TiO2 films, the integrated PL intensity of the red and green peaks as well as the percentage of Ti3+ in the films are plotted together as functions of the annealing temperature in Figure 10, in which the integrated PL intensity of the red and green peaks is derived by multiple-peak Gaussian fitting of the PL spectra in Figure 6. The integrated intensity of the green band was low at annealing temperature below 700°C, it increases from 700°C to 900°C, and then saturated at annealing temperature above 900°C. No obvious correlation was observed between the PL intensity of the green band and the Ti3+ ion concentration. The dependence of the integrated PL intensity of the red band on the annealing temperature shows a thermal behavior quite similar to the change of the Ti3+ ion concentration. Both of them increased with increasing annealing temperature from 300°C to 800°C, after reaches a maximum at 800°C and then decreases dramatically at annealing temperature varied from 800°C to 900°C. This similarity suggests that the red band may have a strong correlation with the defects associated with the under-coordinated Ti3+ ions in anatase TiO2.Figure 10

Bottom Line: The amorphous TiO2 film crystallizes to anatase TiO2 phase with annealing temperature ranged from 300°C to 1,100°C in N2 atmosphere, while the anatase TiO2 film transforms into rutile phase at a temperature of 1,000°C.Photoluminescence from anatase TiO2 films contains a red band at 600 nm and a green band at around 515 nm.A blue shift of the photoluminescence spectra reveals that the defects of under-coordinated Ti(3+) ions transform to surface oxygen vacancies in the anatase TiO2 film annealing at temperature from 800°C to 900°C in N2 atmosphere.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Weijin Road 94, Tianjin, 300071 China.

ABSTRACT
TiO2 films were grown on silicon substrates by atomic layer deposition (ALD) using tetrakis-dimethylamino titanium and ozone. Amorphous TiO2 film was deposited at a low substrate temperature of 165°C, and anatase TiO2 film was grown at 250°C. The amorphous TiO2 film crystallizes to anatase TiO2 phase with annealing temperature ranged from 300°C to 1,100°C in N2 atmosphere, while the anatase TiO2 film transforms into rutile phase at a temperature of 1,000°C. Photoluminescence from anatase TiO2 films contains a red band at 600 nm and a green band at around 515 nm. The red band exhibits a strong correlation with defects of the under-coordinated Ti(3+) ions, and the green band shows a close relationship with the oxygen vacancies on (101) oriented anatase crystal surface. A blue shift of the photoluminescence spectra reveals that the defects of under-coordinated Ti(3+) ions transform to surface oxygen vacancies in the anatase TiO2 film annealing at temperature from 800°C to 900°C in N2 atmosphere.

No MeSH data available.