Limits...
Strain and process development for poly(3HB-co-3HP) fermentation by engineered Shimwellia blattae from glycerol.

Sato S, Andreeßen B, Steinbüchel A - AMB Express (2015)

Bottom Line: Poly(3-hydroxybytyrate-co-3-hydroxypropionate), poly(3HB-co-3HP), is a possible alternative to synthetic polymers such as polypropylene, polystyrene and polyethylene due to its low crystallinity and fragility.We already reported that recombinant strains of Shimwellia blattae expressing 1,3-propanediol dehydrogenase DhaT as well as aldehyde dehydrogenase AldD of Pseudomonas putida KT2442, propionate-CoA transferase Pct of Clostridium propionicum X2 and PHA synthase PhaC1 of Ralstonia eutropha H16 are able to accumulate up to 14.5% (wtPHA/wtCDW) of poly(3-hydroxypropionate), poly(3HP), homopolymer from glycerol as a sole carbon source (Appl Microbiol Biotechnol 98:7409-7422, 2014a).However, the cell density was rather low.

View Article: PubMed Central - PubMed

Affiliation: Institut für Molekular Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, D-48149 Münster, Germany.

ABSTRACT
Poly(3-hydroxybytyrate-co-3-hydroxypropionate), poly(3HB-co-3HP), is a possible alternative to synthetic polymers such as polypropylene, polystyrene and polyethylene due to its low crystallinity and fragility. We already reported that recombinant strains of Shimwellia blattae expressing 1,3-propanediol dehydrogenase DhaT as well as aldehyde dehydrogenase AldD of Pseudomonas putida KT2442, propionate-CoA transferase Pct of Clostridium propionicum X2 and PHA synthase PhaC1 of Ralstonia eutropha H16 are able to accumulate up to 14.5% (wtPHA/wtCDW) of poly(3-hydroxypropionate), poly(3HP), homopolymer from glycerol as a sole carbon source (Appl Microbiol Biotechnol 98:7409-7422, 2014a). However, the cell density was rather low. In this study, we optimized the medium aiming at a more efficient PHA synthesis, and we engineered a S. blattae strain accumulating poly(3HB-co-3HP) with varying contents of the constituent 3-hydroxypropionate (3HP) depending on the cultivation conditions. Consequently, 7.12, 0.77 and 0.32 gPHA/L of poly(3HB-co-3HP) containing 2.1, 8.3 and 18.1 mol% 3HP under anaerobic/aerobic (the first 24 hours under anaerobic condition, thereafter, aerobic condition), low aeration/agitation (the minimum stirring rate required in medium mixing and small amount of aeration) and anaerobic conditions (the minimum stirring rate required in medium mixing without aeration), respectively, were synthesized from glycerol by the genetically modified S. blattae ATCC33430 strains in optimized culture medium.

No MeSH data available.


Related in: MedlinePlus

Pathway for conversion of glycerol to poly(3-hydroxybutyrate-co-3-hydroxypropionate) in a recombinant strain ofS. blattae. 1: DhaBCESb, 2: DhaTSb/DhaTPp, 3: AldDPp, 4: PctCp, 5: PhaARe, 6: PhaB1Re, 7: PhaC1Re. Acetyl-CoA is synthesized from glycerol though glycolytic pathway.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385116&req=5

Fig1: Pathway for conversion of glycerol to poly(3-hydroxybutyrate-co-3-hydroxypropionate) in a recombinant strain ofS. blattae. 1: DhaBCESb, 2: DhaTSb/DhaTPp, 3: AldDPp, 4: PctCp, 5: PhaARe, 6: PhaB1Re, 7: PhaC1Re. Acetyl-CoA is synthesized from glycerol though glycolytic pathway.

Mentions: Recently, we reported that S. blattae expressing 1,3-propanediol dehydrogenase (dhaT) and aldehyde dehydrogenase (aldD) of Pseudomonas putida KT2442, propionate-coenzyme A (propionate-CoA) transferase (pct) of Clostridium propionicum X2, and PHA synthase (phaC1) of Ralstonia eutropha H16 accumulates poly(3HP) from glycerol as a sole carbon source up to 14.5% (wtPHA/wtCDW) (Andreeßen et al., 2014a; Heinrich et al., 2013). Here, 1,3PD produced by S. blattae is oxidized first to 3HPA by DhaT and subsequently to 3HP by AldD. 3HP is then activated by addition of coenzyme A by Pct. In order to synthesize poly(3HB-co-3HP) from glycerol in S. blattae, we co-expressed phaA and phaB1 from R. eutropha H16 (Budde et al., 2010) together with the enzymes for the already mentioned artificial poly(3HP) pathway (Heinrich et al., 2013). Two molecules of acetyl-CoA are condensed to acetoacetyl-CoA by a β-ketothiolase (PhaA) and acetoacetyl-CoA is then reduced by an (R)-specific acetoacetyl-CoA reductase (PhaB1) to generate (R)-3HB-CoA. As a result, the recombinant S. blattae (Sb6BP) is capable of synthesizing poly(3HB-co-3HP) (Figure 1).Figure 1


Strain and process development for poly(3HB-co-3HP) fermentation by engineered Shimwellia blattae from glycerol.

Sato S, Andreeßen B, Steinbüchel A - AMB Express (2015)

Pathway for conversion of glycerol to poly(3-hydroxybutyrate-co-3-hydroxypropionate) in a recombinant strain ofS. blattae. 1: DhaBCESb, 2: DhaTSb/DhaTPp, 3: AldDPp, 4: PctCp, 5: PhaARe, 6: PhaB1Re, 7: PhaC1Re. Acetyl-CoA is synthesized from glycerol though glycolytic pathway.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385116&req=5

Fig1: Pathway for conversion of glycerol to poly(3-hydroxybutyrate-co-3-hydroxypropionate) in a recombinant strain ofS. blattae. 1: DhaBCESb, 2: DhaTSb/DhaTPp, 3: AldDPp, 4: PctCp, 5: PhaARe, 6: PhaB1Re, 7: PhaC1Re. Acetyl-CoA is synthesized from glycerol though glycolytic pathway.
Mentions: Recently, we reported that S. blattae expressing 1,3-propanediol dehydrogenase (dhaT) and aldehyde dehydrogenase (aldD) of Pseudomonas putida KT2442, propionate-coenzyme A (propionate-CoA) transferase (pct) of Clostridium propionicum X2, and PHA synthase (phaC1) of Ralstonia eutropha H16 accumulates poly(3HP) from glycerol as a sole carbon source up to 14.5% (wtPHA/wtCDW) (Andreeßen et al., 2014a; Heinrich et al., 2013). Here, 1,3PD produced by S. blattae is oxidized first to 3HPA by DhaT and subsequently to 3HP by AldD. 3HP is then activated by addition of coenzyme A by Pct. In order to synthesize poly(3HB-co-3HP) from glycerol in S. blattae, we co-expressed phaA and phaB1 from R. eutropha H16 (Budde et al., 2010) together with the enzymes for the already mentioned artificial poly(3HP) pathway (Heinrich et al., 2013). Two molecules of acetyl-CoA are condensed to acetoacetyl-CoA by a β-ketothiolase (PhaA) and acetoacetyl-CoA is then reduced by an (R)-specific acetoacetyl-CoA reductase (PhaB1) to generate (R)-3HB-CoA. As a result, the recombinant S. blattae (Sb6BP) is capable of synthesizing poly(3HB-co-3HP) (Figure 1).Figure 1

Bottom Line: Poly(3-hydroxybytyrate-co-3-hydroxypropionate), poly(3HB-co-3HP), is a possible alternative to synthetic polymers such as polypropylene, polystyrene and polyethylene due to its low crystallinity and fragility.We already reported that recombinant strains of Shimwellia blattae expressing 1,3-propanediol dehydrogenase DhaT as well as aldehyde dehydrogenase AldD of Pseudomonas putida KT2442, propionate-CoA transferase Pct of Clostridium propionicum X2 and PHA synthase PhaC1 of Ralstonia eutropha H16 are able to accumulate up to 14.5% (wtPHA/wtCDW) of poly(3-hydroxypropionate), poly(3HP), homopolymer from glycerol as a sole carbon source (Appl Microbiol Biotechnol 98:7409-7422, 2014a).However, the cell density was rather low.

View Article: PubMed Central - PubMed

Affiliation: Institut für Molekular Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, D-48149 Münster, Germany.

ABSTRACT
Poly(3-hydroxybytyrate-co-3-hydroxypropionate), poly(3HB-co-3HP), is a possible alternative to synthetic polymers such as polypropylene, polystyrene and polyethylene due to its low crystallinity and fragility. We already reported that recombinant strains of Shimwellia blattae expressing 1,3-propanediol dehydrogenase DhaT as well as aldehyde dehydrogenase AldD of Pseudomonas putida KT2442, propionate-CoA transferase Pct of Clostridium propionicum X2 and PHA synthase PhaC1 of Ralstonia eutropha H16 are able to accumulate up to 14.5% (wtPHA/wtCDW) of poly(3-hydroxypropionate), poly(3HP), homopolymer from glycerol as a sole carbon source (Appl Microbiol Biotechnol 98:7409-7422, 2014a). However, the cell density was rather low. In this study, we optimized the medium aiming at a more efficient PHA synthesis, and we engineered a S. blattae strain accumulating poly(3HB-co-3HP) with varying contents of the constituent 3-hydroxypropionate (3HP) depending on the cultivation conditions. Consequently, 7.12, 0.77 and 0.32 gPHA/L of poly(3HB-co-3HP) containing 2.1, 8.3 and 18.1 mol% 3HP under anaerobic/aerobic (the first 24 hours under anaerobic condition, thereafter, aerobic condition), low aeration/agitation (the minimum stirring rate required in medium mixing and small amount of aeration) and anaerobic conditions (the minimum stirring rate required in medium mixing without aeration), respectively, were synthesized from glycerol by the genetically modified S. blattae ATCC33430 strains in optimized culture medium.

No MeSH data available.


Related in: MedlinePlus