Limits...
Allelic effects on starch structure and properties of six starch biosynthetic genes in a rice recombinant inbred line population.

Luo J, Jobling SA, Millar A, Morell MK, Li Z - Rice (N Y) (2015)

Bottom Line: Both major alleles (Wxi and SSIIaj) reduced peak viscosity (PV), onset, peak and end gelatinization temperatures (GTs) of amylopectin, and increased amylose-lipid complex dissociation enthalpy compared with their counterpart-alleles, respectively.SBEIIai and SBEIIbj decreased PV, whereas SSIi and SBEIIbj decreased FV.SBEIi reduced setback viscosity and gelatinization enthalpy.

View Article: PubMed Central - PubMed

Affiliation: CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia ; College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200 Australia.

ABSTRACT

Background: The genetic diversity of six starch biosynthetic genes (Wx, SSI, SSIIa, SBEI, SBEIIa and SBEIIb) in indica and japonica rices opens an opportunity to produce a new variety with more favourable grain starch quality. However, there is limited information about the effects of these six gene allele combinations on starch structure and properties. A recombinant inbred line population from a cross between indica and japonica varieties offers opportunities to combine specific alleles of the six genes.

Results: The allelic (indica vs japonica) effects of six starch biosynthetic genes on starch structure, functional properties, and abundance of granule bound proteins in rice grains were investigated in a common genetic background using a recombinant inbred line population. The indica Wx (Wxi) allele played a major role while indica SSI (SSIi), japonica SSIIa (SSIIaj) and indica SBEI (SBEIi) alleles had minor roles on the increase of amylose content. SSIIaj and japonica SBEIIb (SBEIIbj) alleles had a major and a minor role on high ratio of ∑DP ≤ 10 to ∑DP ≤ 24 fractions (RCL10/24), respectively. Both major alleles (Wxi and SSIIaj) reduced peak viscosity (PV), onset, peak and end gelatinization temperatures (GTs) of amylopectin, and increased amylose-lipid complex dissociation enthalpy compared with their counterpart-alleles, respectively. SBEIIai and SBEIIbj decreased PV, whereas SSIi and SBEIIbj decreased FV. SBEIi reduced setback viscosity and gelatinization enthalpy. RCL10/24 of chain length distribution in amylopectin is negatively correlated with PV and BD of paste property and GTs of thermal properties. We also report RILs with superior starch properties combining Wxi, SSIj, SSIIaj, SBEIi and SBEIIbj alleles. Additionally, a clear relation is drawn to starch biosynthetic gene alleles, starch structure, properties, and abundance of granule bound starch biosynthetic enzymes inside starch granules.

Conclusions: Rice Wxi and SSIIaj alleles play major roles, while SSIi, SBEIi, SBEIIai and SBEIIbj alleles have minor roles in the determination of starch properties between indica and japonica rice through starch structural modification. The combination of these alleles is a key factor for starch quality improvement in rice breeding programs. RCL10/24 value is critical for starch structure and property determination.

No MeSH data available.


Related in: MedlinePlus

Analysis of starch GBPs in mature rice grain starch of RILs from six allele graoups of six starch synthetic genes by SDS-PAGE. Starches from five RIL lines of each allele were used. Section A: Wx allele group, B: SSI allele group, C: SSIIa allele group, D: SBEI allele group, E: SBEIIa allele group, F: SBEIIb allele group. The molecular sizes are labelled on the left of protein marker bands in kDa. The identity of each protein band in the samples is indicated on the right side of the pictures by an arrow head.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385112&req=5

Fig4: Analysis of starch GBPs in mature rice grain starch of RILs from six allele graoups of six starch synthetic genes by SDS-PAGE. Starches from five RIL lines of each allele were used. Section A: Wx allele group, B: SSI allele group, C: SSIIa allele group, D: SBEI allele group, E: SBEIIa allele group, F: SBEIIb allele group. The molecular sizes are labelled on the left of protein marker bands in kDa. The identity of each protein band in the samples is indicated on the right side of the pictures by an arrow head.

Mentions: The analysis of GBPs prepared from purified starch of mature rice grains showed that four major protein bands with 60 kDa and above were detected in most of the RILs (Figure 4). In parental lines, the top bands at ~88 kDa were identified as SSIIa, ~83 kDa as SBEIIb, ~75 kDa as SSI and ~60 kDa as GBSSI by immunoblotting using specific antibodies (Figure 5).Figure 4


Allelic effects on starch structure and properties of six starch biosynthetic genes in a rice recombinant inbred line population.

Luo J, Jobling SA, Millar A, Morell MK, Li Z - Rice (N Y) (2015)

Analysis of starch GBPs in mature rice grain starch of RILs from six allele graoups of six starch synthetic genes by SDS-PAGE. Starches from five RIL lines of each allele were used. Section A: Wx allele group, B: SSI allele group, C: SSIIa allele group, D: SBEI allele group, E: SBEIIa allele group, F: SBEIIb allele group. The molecular sizes are labelled on the left of protein marker bands in kDa. The identity of each protein band in the samples is indicated on the right side of the pictures by an arrow head.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385112&req=5

Fig4: Analysis of starch GBPs in mature rice grain starch of RILs from six allele graoups of six starch synthetic genes by SDS-PAGE. Starches from five RIL lines of each allele were used. Section A: Wx allele group, B: SSI allele group, C: SSIIa allele group, D: SBEI allele group, E: SBEIIa allele group, F: SBEIIb allele group. The molecular sizes are labelled on the left of protein marker bands in kDa. The identity of each protein band in the samples is indicated on the right side of the pictures by an arrow head.
Mentions: The analysis of GBPs prepared from purified starch of mature rice grains showed that four major protein bands with 60 kDa and above were detected in most of the RILs (Figure 4). In parental lines, the top bands at ~88 kDa were identified as SSIIa, ~83 kDa as SBEIIb, ~75 kDa as SSI and ~60 kDa as GBSSI by immunoblotting using specific antibodies (Figure 5).Figure 4

Bottom Line: Both major alleles (Wxi and SSIIaj) reduced peak viscosity (PV), onset, peak and end gelatinization temperatures (GTs) of amylopectin, and increased amylose-lipid complex dissociation enthalpy compared with their counterpart-alleles, respectively.SBEIIai and SBEIIbj decreased PV, whereas SSIi and SBEIIbj decreased FV.SBEIi reduced setback viscosity and gelatinization enthalpy.

View Article: PubMed Central - PubMed

Affiliation: CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia ; College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200 Australia.

ABSTRACT

Background: The genetic diversity of six starch biosynthetic genes (Wx, SSI, SSIIa, SBEI, SBEIIa and SBEIIb) in indica and japonica rices opens an opportunity to produce a new variety with more favourable grain starch quality. However, there is limited information about the effects of these six gene allele combinations on starch structure and properties. A recombinant inbred line population from a cross between indica and japonica varieties offers opportunities to combine specific alleles of the six genes.

Results: The allelic (indica vs japonica) effects of six starch biosynthetic genes on starch structure, functional properties, and abundance of granule bound proteins in rice grains were investigated in a common genetic background using a recombinant inbred line population. The indica Wx (Wxi) allele played a major role while indica SSI (SSIi), japonica SSIIa (SSIIaj) and indica SBEI (SBEIi) alleles had minor roles on the increase of amylose content. SSIIaj and japonica SBEIIb (SBEIIbj) alleles had a major and a minor role on high ratio of ∑DP ≤ 10 to ∑DP ≤ 24 fractions (RCL10/24), respectively. Both major alleles (Wxi and SSIIaj) reduced peak viscosity (PV), onset, peak and end gelatinization temperatures (GTs) of amylopectin, and increased amylose-lipid complex dissociation enthalpy compared with their counterpart-alleles, respectively. SBEIIai and SBEIIbj decreased PV, whereas SSIi and SBEIIbj decreased FV. SBEIi reduced setback viscosity and gelatinization enthalpy. RCL10/24 of chain length distribution in amylopectin is negatively correlated with PV and BD of paste property and GTs of thermal properties. We also report RILs with superior starch properties combining Wxi, SSIj, SSIIaj, SBEIi and SBEIIbj alleles. Additionally, a clear relation is drawn to starch biosynthetic gene alleles, starch structure, properties, and abundance of granule bound starch biosynthetic enzymes inside starch granules.

Conclusions: Rice Wxi and SSIIaj alleles play major roles, while SSIi, SBEIi, SBEIIai and SBEIIbj alleles have minor roles in the determination of starch properties between indica and japonica rice through starch structural modification. The combination of these alleles is a key factor for starch quality improvement in rice breeding programs. RCL10/24 value is critical for starch structure and property determination.

No MeSH data available.


Related in: MedlinePlus