Limits...
Enhanced efficiency of inverted polymer solar cells by using solution-processed TiOx/CsOx cathode buffer layer.

Zhou X, Fan X, Sun X, Zhang Y, Zhu Z - Nanoscale Res Lett (2015)

Bottom Line: In this work, a double-buffer film of TiOx coated with CsOx (TiOx/CsOx) was solution prepared to be applied in poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:ICBA) and P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) inverted polymer solar cells (PSCs).Moreover, the P3HT:ICBA and P3HT:PCBM photovoltaic devices with the double-buffer film showed the best power conversion efficiency up to 5.65% and 3.76%, respectively.Our results not only present that the double-buffer film is superior than the single film of TiOx and CsOx, but also imply that the solution-processed film has a potential to be generally used in roll-to-roll processed organic photovoltaic devices.

View Article: PubMed Central - PubMed

Affiliation: School of Physics and Electromechnical Engineering, Zhoukou Normal University, Zhoukou, 466001 People's Republic of China.

ABSTRACT
In this work, a double-buffer film of TiOx coated with CsOx (TiOx/CsOx) was solution prepared to be applied in poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:ICBA) and P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) inverted polymer solar cells (PSCs). Compared with TiOx films and CsOx films, the TiOx/CsOx double-buffer film exhibited a favorable energy-level alignment among TiOx, CsOx, and the electron acceptor of PCBM or ICBA a better surface morphology; and an enhanced wetting and adhesion property with a contact angle of 21.0°, leading to a higher electron mobility of 5.52 × 10(-3) cm(2) V(-1)·s(-1). Moreover, the P3HT:ICBA and P3HT:PCBM photovoltaic devices with the double-buffer film showed the best power conversion efficiency up to 5.65% and 3.76%, respectively. Our results not only present that the double-buffer film is superior than the single film of TiOx and CsOx, but also imply that the solution-processed film has a potential to be generally used in roll-to-roll processed organic photovoltaic devices.

No MeSH data available.


Related in: MedlinePlus

Surface morphology of FTO substrate (a), TiOx(b), CsOx(c), and TiOx/CsOx(d), respectively. The scan size is 6 μm × 6 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4385094&req=5

Fig4: Surface morphology of FTO substrate (a), TiOx(b), CsOx(c), and TiOx/CsOx(d), respectively. The scan size is 6 μm × 6 μm.

Mentions: To investigate the surface morphology of FTO modified by the film, atomic force microscopy measurements were carried out. Figure 4 shows the surface images of the four samples, including the FTO substrate, TiOx, CsOx, and TiOx/CsOx film on FTO substrate. It presents that the FTO substrate without any modification by CsOx or TiOx shows a lot of large ‘valleys’ and the root mean square (RMS) is about 15.7 nm. After spin coating Cs2O3 solution on the FTO substrate and then thermal annealing, it forms a CsOx thin film, which exhibits a lower RMS of 12.5 nm; however, there is not any apparent change in surface morphology between the FTO and the CsOx-modified FTO. Due to the modification of TiOx on FTO substrate, the TiOx film exhibits a decreased RMS of about 7.6 nm. Moreover, it shows smaller ‘valleys’ on the surface and becomes much smoother than the CsOx film, whereas the TiOx/CsOx film presents a RMS of just 4.9 nm, indicating the CsOx combines well with the TiOx film.Figure 4


Enhanced efficiency of inverted polymer solar cells by using solution-processed TiOx/CsOx cathode buffer layer.

Zhou X, Fan X, Sun X, Zhang Y, Zhu Z - Nanoscale Res Lett (2015)

Surface morphology of FTO substrate (a), TiOx(b), CsOx(c), and TiOx/CsOx(d), respectively. The scan size is 6 μm × 6 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4385094&req=5

Fig4: Surface morphology of FTO substrate (a), TiOx(b), CsOx(c), and TiOx/CsOx(d), respectively. The scan size is 6 μm × 6 μm.
Mentions: To investigate the surface morphology of FTO modified by the film, atomic force microscopy measurements were carried out. Figure 4 shows the surface images of the four samples, including the FTO substrate, TiOx, CsOx, and TiOx/CsOx film on FTO substrate. It presents that the FTO substrate without any modification by CsOx or TiOx shows a lot of large ‘valleys’ and the root mean square (RMS) is about 15.7 nm. After spin coating Cs2O3 solution on the FTO substrate and then thermal annealing, it forms a CsOx thin film, which exhibits a lower RMS of 12.5 nm; however, there is not any apparent change in surface morphology between the FTO and the CsOx-modified FTO. Due to the modification of TiOx on FTO substrate, the TiOx film exhibits a decreased RMS of about 7.6 nm. Moreover, it shows smaller ‘valleys’ on the surface and becomes much smoother than the CsOx film, whereas the TiOx/CsOx film presents a RMS of just 4.9 nm, indicating the CsOx combines well with the TiOx film.Figure 4

Bottom Line: In this work, a double-buffer film of TiOx coated with CsOx (TiOx/CsOx) was solution prepared to be applied in poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:ICBA) and P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) inverted polymer solar cells (PSCs).Moreover, the P3HT:ICBA and P3HT:PCBM photovoltaic devices with the double-buffer film showed the best power conversion efficiency up to 5.65% and 3.76%, respectively.Our results not only present that the double-buffer film is superior than the single film of TiOx and CsOx, but also imply that the solution-processed film has a potential to be generally used in roll-to-roll processed organic photovoltaic devices.

View Article: PubMed Central - PubMed

Affiliation: School of Physics and Electromechnical Engineering, Zhoukou Normal University, Zhoukou, 466001 People's Republic of China.

ABSTRACT
In this work, a double-buffer film of TiOx coated with CsOx (TiOx/CsOx) was solution prepared to be applied in poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:ICBA) and P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) inverted polymer solar cells (PSCs). Compared with TiOx films and CsOx films, the TiOx/CsOx double-buffer film exhibited a favorable energy-level alignment among TiOx, CsOx, and the electron acceptor of PCBM or ICBA a better surface morphology; and an enhanced wetting and adhesion property with a contact angle of 21.0°, leading to a higher electron mobility of 5.52 × 10(-3) cm(2) V(-1)·s(-1). Moreover, the P3HT:ICBA and P3HT:PCBM photovoltaic devices with the double-buffer film showed the best power conversion efficiency up to 5.65% and 3.76%, respectively. Our results not only present that the double-buffer film is superior than the single film of TiOx and CsOx, but also imply that the solution-processed film has a potential to be generally used in roll-to-roll processed organic photovoltaic devices.

No MeSH data available.


Related in: MedlinePlus