Limits...
Human-like collagen protein-coated magnetic nanoparticles with high magnetic hyperthermia performance and improved biocompatibility.

Liu X, Zhang H, Chang L, Yu B, Liu Q, Wu J, Miao Y, Ma P, Fan D, Fan H - Nanoscale Res Lett (2015)

Bottom Line: After coating of HLC, the sample shows a faster rate of temperature increase under an alternating magnetic field although it has a reduced saturation magnetization.In addition, compared with Fe3O4 nanoparticles before coating with HLC, HLC-coated Fe3O4 nanoparticles do not induce notable cytotoxic effect at higher concentration which indicates that HLC-coated Fe3O4 nanoparticles has improved biocompatibility.Our results clearly show that Fe3O4 nanoparticles after coating with HLC not only possess effective heat induction for cancer treatment but also have improved biocompatibility for biomedicine applications.

View Article: PubMed Central - PubMed

Affiliation: Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069 China ; Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574 Singapore.

ABSTRACT
Human-like collagen (HLC)-coated monodispersed superparamagnetic Fe3O4 nanoparticles have been successfully prepared to investigate its effect on heat induction property and cell toxicity. After coating of HLC, the sample shows a faster rate of temperature increase under an alternating magnetic field although it has a reduced saturation magnetization. This is most probably a result of the effective heat conduction and good colloid stability due to the high charge of HLC on the surface. In addition, compared with Fe3O4 nanoparticles before coating with HLC, HLC-coated Fe3O4 nanoparticles do not induce notable cytotoxic effect at higher concentration which indicates that HLC-coated Fe3O4 nanoparticles has improved biocompatibility. Our results clearly show that Fe3O4 nanoparticles after coating with HLC not only possess effective heat induction for cancer treatment but also have improved biocompatibility for biomedicine applications.

No MeSH data available.


Related in: MedlinePlus

TEM, DLS, and zeta-potential. (a) TEM image of hydrophilic Fe3O4 NPs, insert shows digital photograph of hydrophilic Fe3O4 NPs water dispersions. (b) Size distribution histogram. (c) TEM image of Fe3O4 NPs after coating HLC. (d) High-resolution TEM image of Fe3O4 NPs after coating HLC. (e) Hydrodynamic diameter of Fe3O4 NPs before and after coating HLC. (f) The zeta-potential of Fe3O4 NPs before and after coating HLC.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4384969&req=5

Fig3: TEM, DLS, and zeta-potential. (a) TEM image of hydrophilic Fe3O4 NPs, insert shows digital photograph of hydrophilic Fe3O4 NPs water dispersions. (b) Size distribution histogram. (c) TEM image of Fe3O4 NPs after coating HLC. (d) High-resolution TEM image of Fe3O4 NPs after coating HLC. (e) Hydrodynamic diameter of Fe3O4 NPs before and after coating HLC. (f) The zeta-potential of Fe3O4 NPs before and after coating HLC.

Mentions: Figure 2 shows the schematic diagram illustrating the method of coating HLC on the surface of as-synthesized Fe3O4 NPs. As-synthesized uniform Fe3O4 NPs cannot be dispersed in water solution because of oleic acid (OA) coated on its surface, which largely restricts their subsequent biomedicine applications. It is necessary to first disperse these hydrophobic Fe3O4 NPs in aqueous media before they can be used for biomedical applications. To preserve the morphology of the NPs, avoid low exchange efficiency and also avoid using expensive customized copolymers and surfactants; here, the Fe3O4 NPs were dispersed in aqueous solution by oxidation and decomposition of OA which was chem-absorbed on the surface of NPs. By using this method, the Fe3O4 NPs can be made to be hydrophilic and consequently dispersed in water. More importantly, in this way, it will produce the azelaic and pelargonic acids with carboxyl group [23], which may functionalize nanoparticles with the following HLC by using standard (1-ethyl-3-[3-dimethylaminopropyl]carbodiimidehydrochloride)/N-Hydroxysuccinimide (EDC/NHS). Figure 3a shows the TEM image of Fe3O4 NPs dispersion in water solution. It can be seen that the size and shape do not change after dispersing into water. As shown in Figure 3b, the average size is about 8.2 nm and also with a narrow size distribution. The photograph inserted in Figure 3a shows that the Fe3O4 NPs dispersion is quite clear and no obvious aggregation. HLC was then coated on the surface of hydrophilic Fe3O4 NPs by using standard EDC/NHS method. TEM and HRTEM image (Figure 3c,d) show that Fe3O4 NPs are still monodispersed and with high crystalline after coating with HLC. After coating with HLC, the surface property of Fe3O4 NPs is changed. DLS measurements were carried out to evaluate the hydrodynamic diameter of the Fe3O4 NPs dispersion. As shown in Figure 3e, Fe3O4 NPs before coating with HLC has a hydrodynamic size of 24.8 nm, which is considerably larger than that observed using TEM. Such differences in the mean diameters have also been observed for other nanomaterials [3,24]. After coating with HLC, the hydrodynamic size becomes 35.5 nm, which is obviously larger than that of the uncoated hydrophilic Fe3O4 NPs. Moreover, the hydrodynamic size of HLC-coated Fe3O4 NPs determined by DLS does not change significantly for 1 month, further proving the excellent stability of these HLC-coated Fe3O4 NPs for biomedicine applications. The surface charge properties of Fe3O4 NPs before and after coating were studied by measuring the zeta potentials as a function of pH values. Figure 3f shows the surface charges (zeta-potential) of the corresponding Fe3O4 NPs at neutral pH value (pH = 7). HLC itself has a zeta-potential of +2.3 mV. Before coating HLC, it shows −24.7 mV. After coating HLC, it becomes +1.5 mV, which results from the attachment of positive HLC on the surface. These observations clearly indicate the presence of HLC on the surface of Fe3O4 NPs. The HLC-coated Fe3O4 NPs were further characterized by UV-vis absorbance to verify the formation of the HLC coating. Figure 4a,b shows the UV-vis absorption spectra of HLC and HLC-coated Fe3O4 NPs, respectively. The absorption band is at 280 nm, which is attributed to the absorbance of tyrosine [25]. This peak is present in HLC-coated Fe3O4 NPs, which implies that HLC is capped on the surface of Fe3O4 NPs.Figure 2


Human-like collagen protein-coated magnetic nanoparticles with high magnetic hyperthermia performance and improved biocompatibility.

Liu X, Zhang H, Chang L, Yu B, Liu Q, Wu J, Miao Y, Ma P, Fan D, Fan H - Nanoscale Res Lett (2015)

TEM, DLS, and zeta-potential. (a) TEM image of hydrophilic Fe3O4 NPs, insert shows digital photograph of hydrophilic Fe3O4 NPs water dispersions. (b) Size distribution histogram. (c) TEM image of Fe3O4 NPs after coating HLC. (d) High-resolution TEM image of Fe3O4 NPs after coating HLC. (e) Hydrodynamic diameter of Fe3O4 NPs before and after coating HLC. (f) The zeta-potential of Fe3O4 NPs before and after coating HLC.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4384969&req=5

Fig3: TEM, DLS, and zeta-potential. (a) TEM image of hydrophilic Fe3O4 NPs, insert shows digital photograph of hydrophilic Fe3O4 NPs water dispersions. (b) Size distribution histogram. (c) TEM image of Fe3O4 NPs after coating HLC. (d) High-resolution TEM image of Fe3O4 NPs after coating HLC. (e) Hydrodynamic diameter of Fe3O4 NPs before and after coating HLC. (f) The zeta-potential of Fe3O4 NPs before and after coating HLC.
Mentions: Figure 2 shows the schematic diagram illustrating the method of coating HLC on the surface of as-synthesized Fe3O4 NPs. As-synthesized uniform Fe3O4 NPs cannot be dispersed in water solution because of oleic acid (OA) coated on its surface, which largely restricts their subsequent biomedicine applications. It is necessary to first disperse these hydrophobic Fe3O4 NPs in aqueous media before they can be used for biomedical applications. To preserve the morphology of the NPs, avoid low exchange efficiency and also avoid using expensive customized copolymers and surfactants; here, the Fe3O4 NPs were dispersed in aqueous solution by oxidation and decomposition of OA which was chem-absorbed on the surface of NPs. By using this method, the Fe3O4 NPs can be made to be hydrophilic and consequently dispersed in water. More importantly, in this way, it will produce the azelaic and pelargonic acids with carboxyl group [23], which may functionalize nanoparticles with the following HLC by using standard (1-ethyl-3-[3-dimethylaminopropyl]carbodiimidehydrochloride)/N-Hydroxysuccinimide (EDC/NHS). Figure 3a shows the TEM image of Fe3O4 NPs dispersion in water solution. It can be seen that the size and shape do not change after dispersing into water. As shown in Figure 3b, the average size is about 8.2 nm and also with a narrow size distribution. The photograph inserted in Figure 3a shows that the Fe3O4 NPs dispersion is quite clear and no obvious aggregation. HLC was then coated on the surface of hydrophilic Fe3O4 NPs by using standard EDC/NHS method. TEM and HRTEM image (Figure 3c,d) show that Fe3O4 NPs are still monodispersed and with high crystalline after coating with HLC. After coating with HLC, the surface property of Fe3O4 NPs is changed. DLS measurements were carried out to evaluate the hydrodynamic diameter of the Fe3O4 NPs dispersion. As shown in Figure 3e, Fe3O4 NPs before coating with HLC has a hydrodynamic size of 24.8 nm, which is considerably larger than that observed using TEM. Such differences in the mean diameters have also been observed for other nanomaterials [3,24]. After coating with HLC, the hydrodynamic size becomes 35.5 nm, which is obviously larger than that of the uncoated hydrophilic Fe3O4 NPs. Moreover, the hydrodynamic size of HLC-coated Fe3O4 NPs determined by DLS does not change significantly for 1 month, further proving the excellent stability of these HLC-coated Fe3O4 NPs for biomedicine applications. The surface charge properties of Fe3O4 NPs before and after coating were studied by measuring the zeta potentials as a function of pH values. Figure 3f shows the surface charges (zeta-potential) of the corresponding Fe3O4 NPs at neutral pH value (pH = 7). HLC itself has a zeta-potential of +2.3 mV. Before coating HLC, it shows −24.7 mV. After coating HLC, it becomes +1.5 mV, which results from the attachment of positive HLC on the surface. These observations clearly indicate the presence of HLC on the surface of Fe3O4 NPs. The HLC-coated Fe3O4 NPs were further characterized by UV-vis absorbance to verify the formation of the HLC coating. Figure 4a,b shows the UV-vis absorption spectra of HLC and HLC-coated Fe3O4 NPs, respectively. The absorption band is at 280 nm, which is attributed to the absorbance of tyrosine [25]. This peak is present in HLC-coated Fe3O4 NPs, which implies that HLC is capped on the surface of Fe3O4 NPs.Figure 2

Bottom Line: After coating of HLC, the sample shows a faster rate of temperature increase under an alternating magnetic field although it has a reduced saturation magnetization.In addition, compared with Fe3O4 nanoparticles before coating with HLC, HLC-coated Fe3O4 nanoparticles do not induce notable cytotoxic effect at higher concentration which indicates that HLC-coated Fe3O4 nanoparticles has improved biocompatibility.Our results clearly show that Fe3O4 nanoparticles after coating with HLC not only possess effective heat induction for cancer treatment but also have improved biocompatibility for biomedicine applications.

View Article: PubMed Central - PubMed

Affiliation: Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069 China ; Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574 Singapore.

ABSTRACT
Human-like collagen (HLC)-coated monodispersed superparamagnetic Fe3O4 nanoparticles have been successfully prepared to investigate its effect on heat induction property and cell toxicity. After coating of HLC, the sample shows a faster rate of temperature increase under an alternating magnetic field although it has a reduced saturation magnetization. This is most probably a result of the effective heat conduction and good colloid stability due to the high charge of HLC on the surface. In addition, compared with Fe3O4 nanoparticles before coating with HLC, HLC-coated Fe3O4 nanoparticles do not induce notable cytotoxic effect at higher concentration which indicates that HLC-coated Fe3O4 nanoparticles has improved biocompatibility. Our results clearly show that Fe3O4 nanoparticles after coating with HLC not only possess effective heat induction for cancer treatment but also have improved biocompatibility for biomedicine applications.

No MeSH data available.


Related in: MedlinePlus