Limits...
Photobiomodulation accelerates orthodontic alignment in the early phase of treatment.

Kau CH, Kantarci A, Shaughnessy T, Vachiramon A, Santiwong P, de la Fuente A, Skrenes D, Ma D, Brawn P - Prog Orthod (2013)

Bottom Line: Recently, a number of device-accelerated therapies have emerged in orthodontics.All subjects were fitted with traditional orthodontic brackets and wires.The wire sequences for each site were standardized to an initial round alignment wire (014 NiTi or 016 NiTi) and then advanced through a progression of stiffer arch wires unit alignment occurred (LII<1 mm).

View Article: PubMed Central - PubMed

Affiliation: Department of Orthodontics, School of Dentistry, University of Alabama, Birmingham, AL 35233, USA. ckau@uab.edu.

ABSTRACT

Background: Numerous strategies have been proposed to decrease the treatment time a patient requires in orthodontic treatment. Recently, a number of device-accelerated therapies have emerged in orthodontics. Photobiomodulation is an emerging area of science that has clinical applications in a number of human biological processes. The aim of this study was to determine if photobiomodulation reduces the treatment time in the alignment phase of orthodontic treatment.

Methods: This multicenter clinical trial was performed on 90 subjects (73 test subjects and 17 controls), and Little's Index of Irregularity (LII) was used as a measure of the rate of change of tooth movement. Subjects requiring orthodontic treatment were recruited into the study, and the LII was measured at regular time intervals. Test subjects used a device which produced near-infrared light with a continuous 850-nm wavelength. The surface of the cheek was irradiated with a power density of 60 mW/cm2 for 20 or 30 min/day or 60 min/week to achieve total energy densities of 72, 108, or 216 J/cm2, respectively. All subjects were fitted with traditional orthodontic brackets and wires. The wire sequences for each site were standardized to an initial round alignment wire (014 NiTi or 016 NiTi) and then advanced through a progression of stiffer arch wires unit alignment occurred (LII<1 mm).

Results: The mean LII scores at the start of the clinical trial for the test and control groups were 6.35 and 5.04 mm, respectively. Multi-level mixed effect regression analysis was performed on the data, and the mean rate of change in LII was 0.49 and 1.12 mm/week for the control and test groups, respectively.

Conclusions: Photobiomodulation produced clinically significant changes in the rates of tooth movement as compared to the control group during the alignment phase of orthodontic treatment.

Show MeSH

Related in: MedlinePlus

Device components and a clinical presentation. (A, B) A set of four extra-oral treatment arrays, each with a flexible printed circuit board and a set of LEDs mounted on a contoured heat sink and infrared-transmissible plastic lens, with conductive cables to the controller. (C) A headset similar to an eyeglass support structure to be worn by the patient on a daily or weekly basis, with attachment and adjustment mechanisms to position the treatment arrays in the appropriate location for the given patient. (D, E, F) Clinical presentation of the device.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4384947&req=5

Fig1: Device components and a clinical presentation. (A, B) A set of four extra-oral treatment arrays, each with a flexible printed circuit board and a set of LEDs mounted on a contoured heat sink and infrared-transmissible plastic lens, with conductive cables to the controller. (C) A headset similar to an eyeglass support structure to be worn by the patient on a daily or weekly basis, with attachment and adjustment mechanisms to position the treatment arrays in the appropriate location for the given patient. (D, E, F) Clinical presentation of the device.

Mentions: Test subjects used a device (Extra-oral OrthoPulse LED, Biolux Research, Vancouver, Canada) which produced near-infrared light with a continuous 850-nm wavelength. The surface of the cheek was irradiated with a power density of 60 mW/cm2 for 20 or 30 min/day or 60 min/week to achieve total energy densities of 72, 108, or 216 J/cm2, respectively. Industry-standard light emitting diodes (LEDs) were used to produce the light, with arrays of emitters arranged in a series of treatment arrays to cover the target area of the alveolus of both the maxilla and mandible. A clinical presentation of the use as well as the components of the study device is depicted in FigureĀ 1. The device consists of three main components:


Photobiomodulation accelerates orthodontic alignment in the early phase of treatment.

Kau CH, Kantarci A, Shaughnessy T, Vachiramon A, Santiwong P, de la Fuente A, Skrenes D, Ma D, Brawn P - Prog Orthod (2013)

Device components and a clinical presentation. (A, B) A set of four extra-oral treatment arrays, each with a flexible printed circuit board and a set of LEDs mounted on a contoured heat sink and infrared-transmissible plastic lens, with conductive cables to the controller. (C) A headset similar to an eyeglass support structure to be worn by the patient on a daily or weekly basis, with attachment and adjustment mechanisms to position the treatment arrays in the appropriate location for the given patient. (D, E, F) Clinical presentation of the device.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4384947&req=5

Fig1: Device components and a clinical presentation. (A, B) A set of four extra-oral treatment arrays, each with a flexible printed circuit board and a set of LEDs mounted on a contoured heat sink and infrared-transmissible plastic lens, with conductive cables to the controller. (C) A headset similar to an eyeglass support structure to be worn by the patient on a daily or weekly basis, with attachment and adjustment mechanisms to position the treatment arrays in the appropriate location for the given patient. (D, E, F) Clinical presentation of the device.
Mentions: Test subjects used a device (Extra-oral OrthoPulse LED, Biolux Research, Vancouver, Canada) which produced near-infrared light with a continuous 850-nm wavelength. The surface of the cheek was irradiated with a power density of 60 mW/cm2 for 20 or 30 min/day or 60 min/week to achieve total energy densities of 72, 108, or 216 J/cm2, respectively. Industry-standard light emitting diodes (LEDs) were used to produce the light, with arrays of emitters arranged in a series of treatment arrays to cover the target area of the alveolus of both the maxilla and mandible. A clinical presentation of the use as well as the components of the study device is depicted in FigureĀ 1. The device consists of three main components:

Bottom Line: Recently, a number of device-accelerated therapies have emerged in orthodontics.All subjects were fitted with traditional orthodontic brackets and wires.The wire sequences for each site were standardized to an initial round alignment wire (014 NiTi or 016 NiTi) and then advanced through a progression of stiffer arch wires unit alignment occurred (LII<1 mm).

View Article: PubMed Central - PubMed

Affiliation: Department of Orthodontics, School of Dentistry, University of Alabama, Birmingham, AL 35233, USA. ckau@uab.edu.

ABSTRACT

Background: Numerous strategies have been proposed to decrease the treatment time a patient requires in orthodontic treatment. Recently, a number of device-accelerated therapies have emerged in orthodontics. Photobiomodulation is an emerging area of science that has clinical applications in a number of human biological processes. The aim of this study was to determine if photobiomodulation reduces the treatment time in the alignment phase of orthodontic treatment.

Methods: This multicenter clinical trial was performed on 90 subjects (73 test subjects and 17 controls), and Little's Index of Irregularity (LII) was used as a measure of the rate of change of tooth movement. Subjects requiring orthodontic treatment were recruited into the study, and the LII was measured at regular time intervals. Test subjects used a device which produced near-infrared light with a continuous 850-nm wavelength. The surface of the cheek was irradiated with a power density of 60 mW/cm2 for 20 or 30 min/day or 60 min/week to achieve total energy densities of 72, 108, or 216 J/cm2, respectively. All subjects were fitted with traditional orthodontic brackets and wires. The wire sequences for each site were standardized to an initial round alignment wire (014 NiTi or 016 NiTi) and then advanced through a progression of stiffer arch wires unit alignment occurred (LII<1 mm).

Results: The mean LII scores at the start of the clinical trial for the test and control groups were 6.35 and 5.04 mm, respectively. Multi-level mixed effect regression analysis was performed on the data, and the mean rate of change in LII was 0.49 and 1.12 mm/week for the control and test groups, respectively.

Conclusions: Photobiomodulation produced clinically significant changes in the rates of tooth movement as compared to the control group during the alignment phase of orthodontic treatment.

Show MeSH
Related in: MedlinePlus