Limits...
Metabolism. Differential regulation of mTORC1 by leucine and glutamine.

Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS, Guan KL - Science (2015)

Bottom Line: Amino acids stimulate mTORC1 activation at the lysosome in a manner thought to be dependent on the Rag small guanosine triphosphatases (GTPases), the Ragulator complex, and the vacuolar H(+)-adenosine triphosphatase (v-ATPase).Furthermore, we identified the adenosine diphosphate ribosylation factor-1 GTPase to be required for mTORC1 activation and lysosomal localization by glutamine.Our results uncover a signaling cascade to mTORC1 activation independent of the Rag GTPases and suggest that mTORC1 is differentially regulated by specific amino acids.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.

Show MeSH

Related in: MedlinePlus

Gln-induced mTORC1 activation requires the v-ATPase but not the RagulatormTORC1 activity was analyzed by the phosphorylation of S6K1 (pS6K) and the mobility shift of 4EBP1. (A) mTORC1 activity was analyzed in CON and p14 KO MEFs that were starved of amino acids, then stimulated with Leu (top) or Gln (bottom) at the indicated times. (B and C) Analysis of mTORC1 activity in CON and RagA/B KO cells that were starved of amino acids; pretreated with or without 1 μM Baf A; followed by amino acid, Leu, or Gln stimulation for 150 min. (D) CON and RagA/B KO MEFs were treated with shRNA CON (shCON) or shRNA targeting the v-ATPase V0c subunit (shV0c). CON and RagA/B KO MEFs were starved of amino acids, followed by amino acid stimulation, and mTORC1 activity was assessed.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4384888&req=5

Figure 3: Gln-induced mTORC1 activation requires the v-ATPase but not the RagulatormTORC1 activity was analyzed by the phosphorylation of S6K1 (pS6K) and the mobility shift of 4EBP1. (A) mTORC1 activity was analyzed in CON and p14 KO MEFs that were starved of amino acids, then stimulated with Leu (top) or Gln (bottom) at the indicated times. (B and C) Analysis of mTORC1 activity in CON and RagA/B KO cells that were starved of amino acids; pretreated with or without 1 μM Baf A; followed by amino acid, Leu, or Gln stimulation for 150 min. (D) CON and RagA/B KO MEFs were treated with shRNA CON (shCON) or shRNA targeting the v-ATPase V0c subunit (shV0c). CON and RagA/B KO MEFs were starved of amino acids, followed by amino acid stimulation, and mTORC1 activity was assessed.

Mentions: Amino acid transporters (5, 12) and the Ragulator complex (11, 13) have been implicated in mTORC1 activation. We analyzed mTORC1 activity in cells depleted of several amino acid transporters and in MEFs lacking p14 (p14 KO MEFs), an essential subunit of the Ragulator complex. Gln activated mTORC1 in cells depleted of some amino acid transporters and in p14 KO MEFs, which indicated that these transporters and the Ragulator are not required for Gln-induced activation of mTORC1 (fig. S12 and Fig. 3A).


Metabolism. Differential regulation of mTORC1 by leucine and glutamine.

Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS, Guan KL - Science (2015)

Gln-induced mTORC1 activation requires the v-ATPase but not the RagulatormTORC1 activity was analyzed by the phosphorylation of S6K1 (pS6K) and the mobility shift of 4EBP1. (A) mTORC1 activity was analyzed in CON and p14 KO MEFs that were starved of amino acids, then stimulated with Leu (top) or Gln (bottom) at the indicated times. (B and C) Analysis of mTORC1 activity in CON and RagA/B KO cells that were starved of amino acids; pretreated with or without 1 μM Baf A; followed by amino acid, Leu, or Gln stimulation for 150 min. (D) CON and RagA/B KO MEFs were treated with shRNA CON (shCON) or shRNA targeting the v-ATPase V0c subunit (shV0c). CON and RagA/B KO MEFs were starved of amino acids, followed by amino acid stimulation, and mTORC1 activity was assessed.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4384888&req=5

Figure 3: Gln-induced mTORC1 activation requires the v-ATPase but not the RagulatormTORC1 activity was analyzed by the phosphorylation of S6K1 (pS6K) and the mobility shift of 4EBP1. (A) mTORC1 activity was analyzed in CON and p14 KO MEFs that were starved of amino acids, then stimulated with Leu (top) or Gln (bottom) at the indicated times. (B and C) Analysis of mTORC1 activity in CON and RagA/B KO cells that were starved of amino acids; pretreated with or without 1 μM Baf A; followed by amino acid, Leu, or Gln stimulation for 150 min. (D) CON and RagA/B KO MEFs were treated with shRNA CON (shCON) or shRNA targeting the v-ATPase V0c subunit (shV0c). CON and RagA/B KO MEFs were starved of amino acids, followed by amino acid stimulation, and mTORC1 activity was assessed.
Mentions: Amino acid transporters (5, 12) and the Ragulator complex (11, 13) have been implicated in mTORC1 activation. We analyzed mTORC1 activity in cells depleted of several amino acid transporters and in MEFs lacking p14 (p14 KO MEFs), an essential subunit of the Ragulator complex. Gln activated mTORC1 in cells depleted of some amino acid transporters and in p14 KO MEFs, which indicated that these transporters and the Ragulator are not required for Gln-induced activation of mTORC1 (fig. S12 and Fig. 3A).

Bottom Line: Amino acids stimulate mTORC1 activation at the lysosome in a manner thought to be dependent on the Rag small guanosine triphosphatases (GTPases), the Ragulator complex, and the vacuolar H(+)-adenosine triphosphatase (v-ATPase).Furthermore, we identified the adenosine diphosphate ribosylation factor-1 GTPase to be required for mTORC1 activation and lysosomal localization by glutamine.Our results uncover a signaling cascade to mTORC1 activation independent of the Rag GTPases and suggest that mTORC1 is differentially regulated by specific amino acids.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.

Show MeSH
Related in: MedlinePlus