Limits...
Bedside ultrasound training using web-based e-learning and simulation early in the curriculum of residents.

Beaulieu Y, Laprise R, Drolet P, Thivierge RL, Serri K, Albert M, Lamontagne A, Bélliveau M, Denault AY, Patenaude JV - Crit Ultrasound J (2015)

Bottom Line: After the educational intervention, performance of the junior residents on the practical tests was superior to that of the senior residents.The junior residents also had a significantly higher success rate in performing ultrasound-guided needle insertion compared to the senior residents for both the transverse (95% vs. 60%, Fisher's exact test p = 0.0048) and longitudinal views (100% vs. 73%, Fisher's exact test p = 0.0055).Our study demonstrated that a structured curriculum combining web-based education, hands-on training, and simulation integrated early in the training of the junior residents can lead to better proficiency in performing ultrasound-guided techniques compared to the traditional apprenticeship model.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Medicine, Department of Medicine and Hôpital Sacré-Coeur, 5400 boul. Gouin ouest, Montréal, H4J 1C5 Canada.

ABSTRACT

Background: Focused bedside ultrasound is rapidly becoming a standard of care to decrease the risks of complications related to invasive procedures. The purpose of this study was to assess whether adding to the curriculum of junior residents an educational intervention combining web-based e-learning and hands-on training would improve the residents' proficiency in different clinical applications of bedside ultrasound as compared to using the traditional apprenticeship teaching method alone.

Methods: Junior residents (n = 39) were provided with two educational interventions (vascular and pleural ultrasound). Each intervention consisted of a combination of web-based e-learning and bedside hands-on training. Senior residents (n = 15) were the traditionally trained group and were not provided with the educational interventions.

Results: After the educational intervention, performance of the junior residents on the practical tests was superior to that of the senior residents. This was true for the vascular assessment (94% ± 5% vs. 68% ± 15%, unpaired student t test: p < 0.0001, mean difference: 26 (95% CI: 20 to 31)) and even more significant for the pleural assessment (92% ± 9% vs. 57% ± 25%, unpaired student t test: p < 0.0001, mean difference: 35 (95% CI: 23 to 44)). The junior residents also had a significantly higher success rate in performing ultrasound-guided needle insertion compared to the senior residents for both the transverse (95% vs. 60%, Fisher's exact test p = 0.0048) and longitudinal views (100% vs. 73%, Fisher's exact test p = 0.0055).

Conclusions: Our study demonstrated that a structured curriculum combining web-based education, hands-on training, and simulation integrated early in the training of the junior residents can lead to better proficiency in performing ultrasound-guided techniques compared to the traditional apprenticeship model.

No MeSH data available.


e-learning curriculum organization. The vascular (5.5 h duration) and pleural (2.5 h duration) curricula are divided into three and one individual courses, respectively. Each course includes several modules and tests.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4384705&req=5

Fig1: e-learning curriculum organization. The vascular (5.5 h duration) and pleural (2.5 h duration) curricula are divided into three and one individual courses, respectively. Each course includes several modules and tests.

Mentions: This LMS provided descriptions of concepts and clinical applications using multimedia methods such as images, videos, and 3D animations. For each clinical application of bedside ultrasound, the curriculum was divided into one to three individual courses, each one including many modules (Figure 1). In each module, learners assessed their knowledge and learning by completing pre- and post-tests. An average of 10 to 12 h is required to complete the modules (Table 1). Practical sessions (60 to 90 min) consisted of hands-on scanning and clinical teaching at bedside. They were provided by experienced clinical teachers to small groups of participants in various university-affiliated hospitals. Clinical skills were taught using volunteers (sick and healthy) and ultrasound phantoms. During practical sessions, teachers demonstrated how to scan the main vessels and reviewed anatomy, orientation, and pitfalls and how to perform ultrasound-guided needle insertion in various planes. In order to ensure training standardization, clinical teachers were provided with a checklist of items to be covered during each session. Checklists were provided in advance to the participants in order to set expectations and ensure optimal preparation.Figure 1


Bedside ultrasound training using web-based e-learning and simulation early in the curriculum of residents.

Beaulieu Y, Laprise R, Drolet P, Thivierge RL, Serri K, Albert M, Lamontagne A, Bélliveau M, Denault AY, Patenaude JV - Crit Ultrasound J (2015)

e-learning curriculum organization. The vascular (5.5 h duration) and pleural (2.5 h duration) curricula are divided into three and one individual courses, respectively. Each course includes several modules and tests.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4384705&req=5

Fig1: e-learning curriculum organization. The vascular (5.5 h duration) and pleural (2.5 h duration) curricula are divided into three and one individual courses, respectively. Each course includes several modules and tests.
Mentions: This LMS provided descriptions of concepts and clinical applications using multimedia methods such as images, videos, and 3D animations. For each clinical application of bedside ultrasound, the curriculum was divided into one to three individual courses, each one including many modules (Figure 1). In each module, learners assessed their knowledge and learning by completing pre- and post-tests. An average of 10 to 12 h is required to complete the modules (Table 1). Practical sessions (60 to 90 min) consisted of hands-on scanning and clinical teaching at bedside. They were provided by experienced clinical teachers to small groups of participants in various university-affiliated hospitals. Clinical skills were taught using volunteers (sick and healthy) and ultrasound phantoms. During practical sessions, teachers demonstrated how to scan the main vessels and reviewed anatomy, orientation, and pitfalls and how to perform ultrasound-guided needle insertion in various planes. In order to ensure training standardization, clinical teachers were provided with a checklist of items to be covered during each session. Checklists were provided in advance to the participants in order to set expectations and ensure optimal preparation.Figure 1

Bottom Line: After the educational intervention, performance of the junior residents on the practical tests was superior to that of the senior residents.The junior residents also had a significantly higher success rate in performing ultrasound-guided needle insertion compared to the senior residents for both the transverse (95% vs. 60%, Fisher's exact test p = 0.0048) and longitudinal views (100% vs. 73%, Fisher's exact test p = 0.0055).Our study demonstrated that a structured curriculum combining web-based education, hands-on training, and simulation integrated early in the training of the junior residents can lead to better proficiency in performing ultrasound-guided techniques compared to the traditional apprenticeship model.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Medicine, Department of Medicine and Hôpital Sacré-Coeur, 5400 boul. Gouin ouest, Montréal, H4J 1C5 Canada.

ABSTRACT

Background: Focused bedside ultrasound is rapidly becoming a standard of care to decrease the risks of complications related to invasive procedures. The purpose of this study was to assess whether adding to the curriculum of junior residents an educational intervention combining web-based e-learning and hands-on training would improve the residents' proficiency in different clinical applications of bedside ultrasound as compared to using the traditional apprenticeship teaching method alone.

Methods: Junior residents (n = 39) were provided with two educational interventions (vascular and pleural ultrasound). Each intervention consisted of a combination of web-based e-learning and bedside hands-on training. Senior residents (n = 15) were the traditionally trained group and were not provided with the educational interventions.

Results: After the educational intervention, performance of the junior residents on the practical tests was superior to that of the senior residents. This was true for the vascular assessment (94% ± 5% vs. 68% ± 15%, unpaired student t test: p < 0.0001, mean difference: 26 (95% CI: 20 to 31)) and even more significant for the pleural assessment (92% ± 9% vs. 57% ± 25%, unpaired student t test: p < 0.0001, mean difference: 35 (95% CI: 23 to 44)). The junior residents also had a significantly higher success rate in performing ultrasound-guided needle insertion compared to the senior residents for both the transverse (95% vs. 60%, Fisher's exact test p = 0.0048) and longitudinal views (100% vs. 73%, Fisher's exact test p = 0.0055).

Conclusions: Our study demonstrated that a structured curriculum combining web-based education, hands-on training, and simulation integrated early in the training of the junior residents can lead to better proficiency in performing ultrasound-guided techniques compared to the traditional apprenticeship model.

No MeSH data available.