Limits...
Early successional microhabitats allow the persistence of endangered plants in coastal sand dunes.

Pardini EA, Vickstrom KE, Knight TM - PLoS ONE (2015)

Bottom Line: Lupinus tidestromii plants in early successional microhabitats had higher projected rates of population growth than those associated with stabilized, late successional habitats, due primarily to higher rates of recruitment in early successional microhabitats.These results support the idea that restoration of disturbance is critical in historically dynamic landscapes.Our results suggest that large-scale restorations are necessary to allow persistence of the endemic plant species that characterize these ecosystems.

View Article: PubMed Central - PubMed

Affiliation: Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America.

ABSTRACT
Many species are adapted to disturbance and occur within dynamic, mosaic landscapes that contain early and late successional microhabitats. Human modification of disturbance regimes alters the availability of microhabitats and may affect the viability of species in these ecosystems. Because restoring historical disturbance regimes is typically expensive and requires action at large spatial scales, such restoration projects must be justified by linking the persistence of species with successional microhabitats. Coastal sand dune ecosystems worldwide are characterized by their endemic biodiversity and frequent disturbance. Dune-stabilizing invasive plants alter successional dynamics and may threaten species in these ecosystems. We examined the distribution and population dynamics of two federally endangered plant species, the annual Layia carnosa and the perennial Lupinus tidestromii, within a dune ecosystem in northern California, USA. We parameterized a matrix population model for L. tidestromii and examined the magnitude by which the successional stage of the habitat (early or late) influenced population dynamics. Both species had higher frequencies and L. tidestromii had higher frequency of seedlings in early successional habitats. Lupinus tidestromii plants in early successional microhabitats had higher projected rates of population growth than those associated with stabilized, late successional habitats, due primarily to higher rates of recruitment in early successional microhabitats. These results support the idea that restoration of disturbance is critical in historically dynamic landscapes. Our results suggest that large-scale restorations are necessary to allow persistence of the endemic plant species that characterize these ecosystems.

No MeSH data available.


Related in: MedlinePlus

Stage structure of Lupinus tidestromii in three successional microhabitats at Abbotts Lagoon.Stacked bars indicate the proportion of Lupinus tidestromii individuals in each of three stage classes (seedling, non-reproductive, and reproductive) found in each of three successional microhabitats at Abbotts Lagoon. Individuals were pooled across plots within each of the three habitat types. Within 145 vegetation plots, there were 198 plants in 22 early plots, 382 plants in 98 mid plots, and 31 plants in 25 late plots; in total, 109 seedlings, 64 non-reproductive plants, and 438 adult plants were found.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4383614&req=5

pone.0119567.g003: Stage structure of Lupinus tidestromii in three successional microhabitats at Abbotts Lagoon.Stacked bars indicate the proportion of Lupinus tidestromii individuals in each of three stage classes (seedling, non-reproductive, and reproductive) found in each of three successional microhabitats at Abbotts Lagoon. Individuals were pooled across plots within each of the three habitat types. Within 145 vegetation plots, there were 198 plants in 22 early plots, 382 plants in 98 mid plots, and 31 plants in 25 late plots; in total, 109 seedlings, 64 non-reproductive plants, and 438 adult plants were found.

Mentions: The frequency of plots containing L. tidestromii and L. carnosa differed significantly among successional microhabitats, with the highest frequency of occurrence in early plots and the lowest in late plots (Table 1). In 112 plots where L. tidestromii occurred, the stage structure differed among successional microhabitats. Seedling occurrence differed significantly among habitat types (χ2 = 36.07, df = 2, P<0.001): 86% of early plots contained seedlings while no late plots contained seedlings (Fig. 3). Most plots (102 of 112) contained adult L. tidestromii, but the occurrence of adults was lowest among early plots (Fig. 3).


Early successional microhabitats allow the persistence of endangered plants in coastal sand dunes.

Pardini EA, Vickstrom KE, Knight TM - PLoS ONE (2015)

Stage structure of Lupinus tidestromii in three successional microhabitats at Abbotts Lagoon.Stacked bars indicate the proportion of Lupinus tidestromii individuals in each of three stage classes (seedling, non-reproductive, and reproductive) found in each of three successional microhabitats at Abbotts Lagoon. Individuals were pooled across plots within each of the three habitat types. Within 145 vegetation plots, there were 198 plants in 22 early plots, 382 plants in 98 mid plots, and 31 plants in 25 late plots; in total, 109 seedlings, 64 non-reproductive plants, and 438 adult plants were found.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4383614&req=5

pone.0119567.g003: Stage structure of Lupinus tidestromii in three successional microhabitats at Abbotts Lagoon.Stacked bars indicate the proportion of Lupinus tidestromii individuals in each of three stage classes (seedling, non-reproductive, and reproductive) found in each of three successional microhabitats at Abbotts Lagoon. Individuals were pooled across plots within each of the three habitat types. Within 145 vegetation plots, there were 198 plants in 22 early plots, 382 plants in 98 mid plots, and 31 plants in 25 late plots; in total, 109 seedlings, 64 non-reproductive plants, and 438 adult plants were found.
Mentions: The frequency of plots containing L. tidestromii and L. carnosa differed significantly among successional microhabitats, with the highest frequency of occurrence in early plots and the lowest in late plots (Table 1). In 112 plots where L. tidestromii occurred, the stage structure differed among successional microhabitats. Seedling occurrence differed significantly among habitat types (χ2 = 36.07, df = 2, P<0.001): 86% of early plots contained seedlings while no late plots contained seedlings (Fig. 3). Most plots (102 of 112) contained adult L. tidestromii, but the occurrence of adults was lowest among early plots (Fig. 3).

Bottom Line: Lupinus tidestromii plants in early successional microhabitats had higher projected rates of population growth than those associated with stabilized, late successional habitats, due primarily to higher rates of recruitment in early successional microhabitats.These results support the idea that restoration of disturbance is critical in historically dynamic landscapes.Our results suggest that large-scale restorations are necessary to allow persistence of the endemic plant species that characterize these ecosystems.

View Article: PubMed Central - PubMed

Affiliation: Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America.

ABSTRACT
Many species are adapted to disturbance and occur within dynamic, mosaic landscapes that contain early and late successional microhabitats. Human modification of disturbance regimes alters the availability of microhabitats and may affect the viability of species in these ecosystems. Because restoring historical disturbance regimes is typically expensive and requires action at large spatial scales, such restoration projects must be justified by linking the persistence of species with successional microhabitats. Coastal sand dune ecosystems worldwide are characterized by their endemic biodiversity and frequent disturbance. Dune-stabilizing invasive plants alter successional dynamics and may threaten species in these ecosystems. We examined the distribution and population dynamics of two federally endangered plant species, the annual Layia carnosa and the perennial Lupinus tidestromii, within a dune ecosystem in northern California, USA. We parameterized a matrix population model for L. tidestromii and examined the magnitude by which the successional stage of the habitat (early or late) influenced population dynamics. Both species had higher frequencies and L. tidestromii had higher frequency of seedlings in early successional habitats. Lupinus tidestromii plants in early successional microhabitats had higher projected rates of population growth than those associated with stabilized, late successional habitats, due primarily to higher rates of recruitment in early successional microhabitats. These results support the idea that restoration of disturbance is critical in historically dynamic landscapes. Our results suggest that large-scale restorations are necessary to allow persistence of the endemic plant species that characterize these ecosystems.

No MeSH data available.


Related in: MedlinePlus