Limits...
Inflammatory response to nano- and microstructured hydroxyapatite.

Mestres G, Espanol M, Xia W, Persson C, Ginebra MP, Ott MK - PLoS ONE (2015)

Bottom Line: Additionally, the effect of supplementing the extracts with calcium ions and/or proteins was investigated.Macrophage activation on the substrates was evaluated by quantifying the release of reactive oxygen species and by morphological observations.However, the difference in macrophage proliferation was ascribed to different ionic exchanges and protein adsorption/retention from the substrates rather than to the texture of materials.

View Article: PubMed Central - PubMed

Affiliation: Materials in Medicine, Div. of Applied Materials Science, Dpt. Engineering Sciences, Uppsala University, Uppsala, Sweden.

ABSTRACT
The proliferation and activation of leukocytes upon contact with a biomaterial play a crucial role in the degree of inflammatory response, which may then determine the clinical failure or success of an implanted biomaterial. The aim of this study was to evaluate whether nano- and microstructured biomimetic hydroxyapatite substrates can influence the growth and activation of macrophage-like cells. Hydroxyapatite substrates with different crystal morphologies consisting of an entangled network of plate-like and needle-like crystals were evaluated. Macrophage proliferation was evaluated on the material surface (direct contact) and also in extracts i.e. media modified by the material (indirect contact). Additionally, the effect of supplementing the extracts with calcium ions and/or proteins was investigated. Macrophage activation on the substrates was evaluated by quantifying the release of reactive oxygen species and by morphological observations. The results showed that differences in the substrate's microstructure play a major role in the activation of macrophages as there was a higher release of reactive oxygen species after culturing the macrophages on plate-like crystals substrates compared to the almost non-existent release on needle-like substrates. However, the difference in macrophage proliferation was ascribed to different ionic exchanges and protein adsorption/retention from the substrates rather than to the texture of materials.

No MeSH data available.


Related in: MedlinePlus

Factors involved in the experimental studies, where 1 represents the preparation of HA extracts and 2 the cell growth in these extracts.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4383585&req=5

pone.0120381.g010: Factors involved in the experimental studies, where 1 represents the preparation of HA extracts and 2 the cell growth in these extracts.

Mentions: The main motivation of this study was to better understand how nano and microstructured HA substrates affect the proliferation and activation of macrophages. Texture, as mentioned earlier, can be used to control cell behaviour and may be an important parameter in the design of biomaterials. Calcium phosphate cements have been used as a platform for the production of HA substrates with tailored textures. Since cementitious reactions occur through a dissolution and re-precipitation process, the materials obtained are porous due to the nature of the reaction, which results in an entangled network of crystals. This porosity implies that the bulk of the material interacts with the surrounding media (i.e. ions, proteins and other organic compounds) increasing the complexity of the system. Fig. 10 shows the factors involved in each of the studies performed.


Inflammatory response to nano- and microstructured hydroxyapatite.

Mestres G, Espanol M, Xia W, Persson C, Ginebra MP, Ott MK - PLoS ONE (2015)

Factors involved in the experimental studies, where 1 represents the preparation of HA extracts and 2 the cell growth in these extracts.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4383585&req=5

pone.0120381.g010: Factors involved in the experimental studies, where 1 represents the preparation of HA extracts and 2 the cell growth in these extracts.
Mentions: The main motivation of this study was to better understand how nano and microstructured HA substrates affect the proliferation and activation of macrophages. Texture, as mentioned earlier, can be used to control cell behaviour and may be an important parameter in the design of biomaterials. Calcium phosphate cements have been used as a platform for the production of HA substrates with tailored textures. Since cementitious reactions occur through a dissolution and re-precipitation process, the materials obtained are porous due to the nature of the reaction, which results in an entangled network of crystals. This porosity implies that the bulk of the material interacts with the surrounding media (i.e. ions, proteins and other organic compounds) increasing the complexity of the system. Fig. 10 shows the factors involved in each of the studies performed.

Bottom Line: Additionally, the effect of supplementing the extracts with calcium ions and/or proteins was investigated.Macrophage activation on the substrates was evaluated by quantifying the release of reactive oxygen species and by morphological observations.However, the difference in macrophage proliferation was ascribed to different ionic exchanges and protein adsorption/retention from the substrates rather than to the texture of materials.

View Article: PubMed Central - PubMed

Affiliation: Materials in Medicine, Div. of Applied Materials Science, Dpt. Engineering Sciences, Uppsala University, Uppsala, Sweden.

ABSTRACT
The proliferation and activation of leukocytes upon contact with a biomaterial play a crucial role in the degree of inflammatory response, which may then determine the clinical failure or success of an implanted biomaterial. The aim of this study was to evaluate whether nano- and microstructured biomimetic hydroxyapatite substrates can influence the growth and activation of macrophage-like cells. Hydroxyapatite substrates with different crystal morphologies consisting of an entangled network of plate-like and needle-like crystals were evaluated. Macrophage proliferation was evaluated on the material surface (direct contact) and also in extracts i.e. media modified by the material (indirect contact). Additionally, the effect of supplementing the extracts with calcium ions and/or proteins was investigated. Macrophage activation on the substrates was evaluated by quantifying the release of reactive oxygen species and by morphological observations. The results showed that differences in the substrate's microstructure play a major role in the activation of macrophages as there was a higher release of reactive oxygen species after culturing the macrophages on plate-like crystals substrates compared to the almost non-existent release on needle-like substrates. However, the difference in macrophage proliferation was ascribed to different ionic exchanges and protein adsorption/retention from the substrates rather than to the texture of materials.

No MeSH data available.


Related in: MedlinePlus