Limits...
Heme oxygenase-1 protects corexit 9500A-induced respiratory epithelial injury across species.

Li FJ, Duggal RN, Oliva OM, Karki S, Surolia R, Wang Z, Watson RD, Thannickal VJ, Powell M, Watts S, Kulkarni T, Batra H, Bolisetty S, Agarwal A, Antony VB - PLoS ONE (2015)

Bottom Line: CE induced the expression of HO-1 as well as C-reactive protein (CRP) and NADPH oxidase 4 (NOX4), which are associated with ROS production.Treatment with carbon monoxide releasing molecule-2 (CORM-2) significantly inhibited CE-induced ROS production, while the addition of HO-1 inhibitor, significantly increased CE-induced ROS production and apoptosis, suggesting a protective role of HO-1 or its reaction product, CO, in CE-induced apoptosis.Using HO-1 knockout mice, we further demonstrated that HO-1 protected against CE-induced inflammation and cellular apoptosis and corrected CE-mediated inhibition of E-cadherin and FAK.

View Article: PubMed Central - PubMed

Affiliation: Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America.

ABSTRACT
The effects of Corexit 9500A (CE) on respiratory epithelial surfaces of terrestrial mammals and marine animals are largely unknown. This study investigated the role of CE-induced heme oxygenase-1 (HO-1), a cytoprotective enzyme with anti-apoptotic and antioxidant activity, in human bronchial airway epithelium and the gills of exposed aquatic animals. We evaluated CE-mediated alterations in human airway epithelial cells, mice lungs and gills from zebrafish and blue crabs. Our results demonstrated that CE induced an increase in gill epithelial edema and human epithelial monolayer permeability, suggesting an acute injury caused by CE exposure. CE induced the expression of HO-1 as well as C-reactive protein (CRP) and NADPH oxidase 4 (NOX4), which are associated with ROS production. Importantly, CE induced caspase-3 activation and subsequent apoptosis of epithelial cells. The expression of the intercellular junctional proteins, such as tight junction proteins occludin, zonula occludens (ZO-1), ZO-2 and adherens junctional proteins E-cadherin and Focal Adhesion Kinase (FAK), were remarkably inhibited by CE, suggesting that these proteins are involved in CE-induced increased permeability and subsequent apoptosis. The cytoskeletal protein F-actin was also disrupted by CE. Treatment with carbon monoxide releasing molecule-2 (CORM-2) significantly inhibited CE-induced ROS production, while the addition of HO-1 inhibitor, significantly increased CE-induced ROS production and apoptosis, suggesting a protective role of HO-1 or its reaction product, CO, in CE-induced apoptosis. Using HO-1 knockout mice, we further demonstrated that HO-1 protected against CE-induced inflammation and cellular apoptosis and corrected CE-mediated inhibition of E-cadherin and FAK. These observations suggest that CE activates CRP and NOX4-mediated ROS production, alters permeability by inhibition of junctional proteins, and leads to caspase-3 dependent apoptosis of epithelial cells, while HO-1 and its reaction products protect against oxidative stress and apoptosis.

No MeSH data available.


Related in: MedlinePlus

Morphological changes, reduction in cell diameter, permeability increase and disruption of intercellular junctions induced by CE.(A) Gills of zebrafish were exposed to either CE (150 ppm) or held as controls for 24 hours or 56 hours and stained with H&E. Digital micrographs were obtained at 20 x magnifications. Arrows point to edema and blebbing of gill epithelium. The ratios of gill area/gill length were calculated using Image Software (NIH, Bethesda, MD, USA) and presented as 1-dimensional area measurements. Data is quantified and shown as mean ± SD of three independent experiments. ** p < 0.01 vs control by a one-way ANOVA with HSD test. (B) Cell diameter measurements. BEAS-2B cells were grown to confluence in 65 mm dishes and exposed to 0 to 150 ppm of CE for 2 hours (n = 3). Data are shown as a mean ± SD. * p < 0.05 and ** p < 0.01 vs control by a one-way ANOVA with HSD test. (C) Permeability measurement of the bronchial epithelium of the airway. The sub-acute response to CE exposure was modeled by ECIS. BEAS-2B cells were seeded into the ECIS array. Cells were allowed to cover the gold electrodes in each well of the array prior to exposure to CE (0 ppm to 70 ppm). Real-time measurements of the electric resistance of the bronchial epithelial monolayers were obtained at 64 kHz. Resistance measurements were normalized with respect to the values in each well 1 hour prior to the initiation of the exposure. This time period corresponded to 16 hours after the seeding of the cells and was designated as t = 0 hour in the graph. The data are representative of three independent experiments. (D) BREA-2B cells were culture with or without 100 ppm CE for 1 hour. Protein expression of ZO-1 and actin filaments was detected using immunofluorescence microscopy (original magnification, ×40) with rabbit anti-ZO-1 (green) and phalloidin (red). Representative images captured from BEAS-2B cells are shown.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4383564&req=5

pone.0122275.g001: Morphological changes, reduction in cell diameter, permeability increase and disruption of intercellular junctions induced by CE.(A) Gills of zebrafish were exposed to either CE (150 ppm) or held as controls for 24 hours or 56 hours and stained with H&E. Digital micrographs were obtained at 20 x magnifications. Arrows point to edema and blebbing of gill epithelium. The ratios of gill area/gill length were calculated using Image Software (NIH, Bethesda, MD, USA) and presented as 1-dimensional area measurements. Data is quantified and shown as mean ± SD of three independent experiments. ** p < 0.01 vs control by a one-way ANOVA with HSD test. (B) Cell diameter measurements. BEAS-2B cells were grown to confluence in 65 mm dishes and exposed to 0 to 150 ppm of CE for 2 hours (n = 3). Data are shown as a mean ± SD. * p < 0.05 and ** p < 0.01 vs control by a one-way ANOVA with HSD test. (C) Permeability measurement of the bronchial epithelium of the airway. The sub-acute response to CE exposure was modeled by ECIS. BEAS-2B cells were seeded into the ECIS array. Cells were allowed to cover the gold electrodes in each well of the array prior to exposure to CE (0 ppm to 70 ppm). Real-time measurements of the electric resistance of the bronchial epithelial monolayers were obtained at 64 kHz. Resistance measurements were normalized with respect to the values in each well 1 hour prior to the initiation of the exposure. This time period corresponded to 16 hours after the seeding of the cells and was designated as t = 0 hour in the graph. The data are representative of three independent experiments. (D) BREA-2B cells were culture with or without 100 ppm CE for 1 hour. Protein expression of ZO-1 and actin filaments was detected using immunofluorescence microscopy (original magnification, ×40) with rabbit anti-ZO-1 (green) and phalloidin (red). Representative images captured from BEAS-2B cells are shown.

Mentions: First, we evaluated the morphological changes of zebrafish gills in response to CE stimulation and provided comparison to analogous or homologous responses in human and invertebrate tissues. The mean lethal concentration (LC50) of CE in zebrafish was determined in order to establish an appropriate experimental concentration. All specimens survived for 96 hours at 0 ppm and 400 ppm CE. The 96 hour LC50 for adult zebrafish exposed to CE was calculated to be 481 ppm. After 96 hours, specimens exposed to 580 ppm or higher died. 150 ppm was chosen as the concentration for exposure studies since it had shown 0% lethality over a 96 hour period; yet, it allowed for the full effect of CE exposure to be manifested under sub-acute conditions (24 to 56 hours). Exposure to CE caused significant edema in the lamellae of zebrafish gills (Fig. 1A). This response was widespread for both 24 hours and 56 hours exposures. In each case, the gill sections showed a separation of pavement epithelial cells from the basal membrane of the lamella suggestive of gill edema. The quantitative analysis of the area of the lamellae (Fig. 1A) indicated that the edema observed in each group was statistically significant with respect to control; however, no statistically significant difference was seen between the 24 hours and 56 hours exposure groups. BEAS-2B cells exposed to CE for 2 hours showed a dose-dependent decrease in cell diameter measured with Scepter 2.0 cell counter with a 40 μm sensor (Fig. 1B). The ECIS method is a well-established functional assay that utilizes electrical resistance as a measure of permeability and/or integrity of cell monolayers [56]. We assessed the response of bronchial epithelial monolayers to CE by means of ECIS (Fig. 1C). Real time measurements of electrical resistance were obtained for a range of low CE concentrations (10 ppm–70 ppm) over a 46 hours period. The data was normalized with respect to the resistance value of each well 1 hour prior to inoculation with CE. The results obtained indicate that CE caused a reduction in the resistance (increase in permeability) of the bronchial epithelial monolayer following 46 hours of exposure. These results demonstrate that CE is able to instigate a loss of the barrier function and integrity of the respiratory epithelium of the airway.


Heme oxygenase-1 protects corexit 9500A-induced respiratory epithelial injury across species.

Li FJ, Duggal RN, Oliva OM, Karki S, Surolia R, Wang Z, Watson RD, Thannickal VJ, Powell M, Watts S, Kulkarni T, Batra H, Bolisetty S, Agarwal A, Antony VB - PLoS ONE (2015)

Morphological changes, reduction in cell diameter, permeability increase and disruption of intercellular junctions induced by CE.(A) Gills of zebrafish were exposed to either CE (150 ppm) or held as controls for 24 hours or 56 hours and stained with H&E. Digital micrographs were obtained at 20 x magnifications. Arrows point to edema and blebbing of gill epithelium. The ratios of gill area/gill length were calculated using Image Software (NIH, Bethesda, MD, USA) and presented as 1-dimensional area measurements. Data is quantified and shown as mean ± SD of three independent experiments. ** p < 0.01 vs control by a one-way ANOVA with HSD test. (B) Cell diameter measurements. BEAS-2B cells were grown to confluence in 65 mm dishes and exposed to 0 to 150 ppm of CE for 2 hours (n = 3). Data are shown as a mean ± SD. * p < 0.05 and ** p < 0.01 vs control by a one-way ANOVA with HSD test. (C) Permeability measurement of the bronchial epithelium of the airway. The sub-acute response to CE exposure was modeled by ECIS. BEAS-2B cells were seeded into the ECIS array. Cells were allowed to cover the gold electrodes in each well of the array prior to exposure to CE (0 ppm to 70 ppm). Real-time measurements of the electric resistance of the bronchial epithelial monolayers were obtained at 64 kHz. Resistance measurements were normalized with respect to the values in each well 1 hour prior to the initiation of the exposure. This time period corresponded to 16 hours after the seeding of the cells and was designated as t = 0 hour in the graph. The data are representative of three independent experiments. (D) BREA-2B cells were culture with or without 100 ppm CE for 1 hour. Protein expression of ZO-1 and actin filaments was detected using immunofluorescence microscopy (original magnification, ×40) with rabbit anti-ZO-1 (green) and phalloidin (red). Representative images captured from BEAS-2B cells are shown.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4383564&req=5

pone.0122275.g001: Morphological changes, reduction in cell diameter, permeability increase and disruption of intercellular junctions induced by CE.(A) Gills of zebrafish were exposed to either CE (150 ppm) or held as controls for 24 hours or 56 hours and stained with H&E. Digital micrographs were obtained at 20 x magnifications. Arrows point to edema and blebbing of gill epithelium. The ratios of gill area/gill length were calculated using Image Software (NIH, Bethesda, MD, USA) and presented as 1-dimensional area measurements. Data is quantified and shown as mean ± SD of three independent experiments. ** p < 0.01 vs control by a one-way ANOVA with HSD test. (B) Cell diameter measurements. BEAS-2B cells were grown to confluence in 65 mm dishes and exposed to 0 to 150 ppm of CE for 2 hours (n = 3). Data are shown as a mean ± SD. * p < 0.05 and ** p < 0.01 vs control by a one-way ANOVA with HSD test. (C) Permeability measurement of the bronchial epithelium of the airway. The sub-acute response to CE exposure was modeled by ECIS. BEAS-2B cells were seeded into the ECIS array. Cells were allowed to cover the gold electrodes in each well of the array prior to exposure to CE (0 ppm to 70 ppm). Real-time measurements of the electric resistance of the bronchial epithelial monolayers were obtained at 64 kHz. Resistance measurements were normalized with respect to the values in each well 1 hour prior to the initiation of the exposure. This time period corresponded to 16 hours after the seeding of the cells and was designated as t = 0 hour in the graph. The data are representative of three independent experiments. (D) BREA-2B cells were culture with or without 100 ppm CE for 1 hour. Protein expression of ZO-1 and actin filaments was detected using immunofluorescence microscopy (original magnification, ×40) with rabbit anti-ZO-1 (green) and phalloidin (red). Representative images captured from BEAS-2B cells are shown.
Mentions: First, we evaluated the morphological changes of zebrafish gills in response to CE stimulation and provided comparison to analogous or homologous responses in human and invertebrate tissues. The mean lethal concentration (LC50) of CE in zebrafish was determined in order to establish an appropriate experimental concentration. All specimens survived for 96 hours at 0 ppm and 400 ppm CE. The 96 hour LC50 for adult zebrafish exposed to CE was calculated to be 481 ppm. After 96 hours, specimens exposed to 580 ppm or higher died. 150 ppm was chosen as the concentration for exposure studies since it had shown 0% lethality over a 96 hour period; yet, it allowed for the full effect of CE exposure to be manifested under sub-acute conditions (24 to 56 hours). Exposure to CE caused significant edema in the lamellae of zebrafish gills (Fig. 1A). This response was widespread for both 24 hours and 56 hours exposures. In each case, the gill sections showed a separation of pavement epithelial cells from the basal membrane of the lamella suggestive of gill edema. The quantitative analysis of the area of the lamellae (Fig. 1A) indicated that the edema observed in each group was statistically significant with respect to control; however, no statistically significant difference was seen between the 24 hours and 56 hours exposure groups. BEAS-2B cells exposed to CE for 2 hours showed a dose-dependent decrease in cell diameter measured with Scepter 2.0 cell counter with a 40 μm sensor (Fig. 1B). The ECIS method is a well-established functional assay that utilizes electrical resistance as a measure of permeability and/or integrity of cell monolayers [56]. We assessed the response of bronchial epithelial monolayers to CE by means of ECIS (Fig. 1C). Real time measurements of electrical resistance were obtained for a range of low CE concentrations (10 ppm–70 ppm) over a 46 hours period. The data was normalized with respect to the resistance value of each well 1 hour prior to inoculation with CE. The results obtained indicate that CE caused a reduction in the resistance (increase in permeability) of the bronchial epithelial monolayer following 46 hours of exposure. These results demonstrate that CE is able to instigate a loss of the barrier function and integrity of the respiratory epithelium of the airway.

Bottom Line: CE induced the expression of HO-1 as well as C-reactive protein (CRP) and NADPH oxidase 4 (NOX4), which are associated with ROS production.Treatment with carbon monoxide releasing molecule-2 (CORM-2) significantly inhibited CE-induced ROS production, while the addition of HO-1 inhibitor, significantly increased CE-induced ROS production and apoptosis, suggesting a protective role of HO-1 or its reaction product, CO, in CE-induced apoptosis.Using HO-1 knockout mice, we further demonstrated that HO-1 protected against CE-induced inflammation and cellular apoptosis and corrected CE-mediated inhibition of E-cadherin and FAK.

View Article: PubMed Central - PubMed

Affiliation: Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America.

ABSTRACT
The effects of Corexit 9500A (CE) on respiratory epithelial surfaces of terrestrial mammals and marine animals are largely unknown. This study investigated the role of CE-induced heme oxygenase-1 (HO-1), a cytoprotective enzyme with anti-apoptotic and antioxidant activity, in human bronchial airway epithelium and the gills of exposed aquatic animals. We evaluated CE-mediated alterations in human airway epithelial cells, mice lungs and gills from zebrafish and blue crabs. Our results demonstrated that CE induced an increase in gill epithelial edema and human epithelial monolayer permeability, suggesting an acute injury caused by CE exposure. CE induced the expression of HO-1 as well as C-reactive protein (CRP) and NADPH oxidase 4 (NOX4), which are associated with ROS production. Importantly, CE induced caspase-3 activation and subsequent apoptosis of epithelial cells. The expression of the intercellular junctional proteins, such as tight junction proteins occludin, zonula occludens (ZO-1), ZO-2 and adherens junctional proteins E-cadherin and Focal Adhesion Kinase (FAK), were remarkably inhibited by CE, suggesting that these proteins are involved in CE-induced increased permeability and subsequent apoptosis. The cytoskeletal protein F-actin was also disrupted by CE. Treatment with carbon monoxide releasing molecule-2 (CORM-2) significantly inhibited CE-induced ROS production, while the addition of HO-1 inhibitor, significantly increased CE-induced ROS production and apoptosis, suggesting a protective role of HO-1 or its reaction product, CO, in CE-induced apoptosis. Using HO-1 knockout mice, we further demonstrated that HO-1 protected against CE-induced inflammation and cellular apoptosis and corrected CE-mediated inhibition of E-cadherin and FAK. These observations suggest that CE activates CRP and NOX4-mediated ROS production, alters permeability by inhibition of junctional proteins, and leads to caspase-3 dependent apoptosis of epithelial cells, while HO-1 and its reaction products protect against oxidative stress and apoptosis.

No MeSH data available.


Related in: MedlinePlus