Limits...
Investigating breast cancer cell behavior using tissue engineering scaffolds.

Guiro K, Patel SA, Greco SJ, Rameshwar P, Arinzeh TL - PLoS ONE (2015)

Bottom Line: The majority of studies use in vitro, two-dimensional (2-D) monolayer cultures, which do not recapitulate the in vivo microenvironment.Further studies with MDA-MB-231 BCCs seeded on the scaffolds showed little to no change in cell number over time for non-treated BCCs whereas on tissue culture polystyrene (TCP), non-treated BCCs displayed a significant increase in cell number at days 4 and 7 as compared to day 1 (p<0.05).Treated BCCs did not proliferate on TCP and the fibrous scaffolds.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America.

ABSTRACT
Despite early detection through the use of mammograms and aggressive intervention, breast cancer (BC) remains a clinical dilemma. BC can resurge after >10 years of remission. Studies indicate that BC cells (BCCs) with self-renewal and chemoresistance could be involved in dormancy. The majority of studies use in vitro, two-dimensional (2-D) monolayer cultures, which do not recapitulate the in vivo microenvironment. Thus, to determine the effect of three-dimensional (3-D) microenvironment on BCCs, this study fabricated tissue engineering scaffolds made of poly (ε-caprolactone) (PCL) having aligned or random fibers. Random and aligned fibers mimic, respectively, the random and highly organized collagen fibers found in the tumor extracellular matrix. Chemoresistant BCCs were obtained by treating with carboplatin. Western blot analysis of carboplatin resistant (treated) MDA-MB-231 (highly invasive, basal-like) and T47D (low-invasive, luminal) BCCs showed an increase in Bcl-2, Oct-4 and Sox-2, suggesting protection from apoptosis and increase in stem-like markers. Further studies with MDA-MB-231 BCCs seeded on the scaffolds showed little to no change in cell number over time for non-treated BCCs whereas on tissue culture polystyrene (TCP), non-treated BCCs displayed a significant increase in cell number at days 4 and 7 as compared to day 1 (p<0.05). Treated BCCs did not proliferate on TCP and the fibrous scaffolds. Little to no cyclin D1 was expressed for non-treated BCCs on TCP. On fibrous scaffolds, non-treated BCCs stained for cyclin D1 during the 7-day culture period. Treated BCCs expressed cyclin D1 on TCP and fibrous scaffolds during the 7-day culture period. Proliferation, viability and cell cycle analysis indicated that this 3-D culture prompted the aggressive BCCs to adopt a dormant phenotype, while the treated BCCs retained their phenotype. The findings indicate that random and aligned fibrous PCL scaffolds may provide a useful system to study how the 3-D microenvironment affects the behavior of BCCs.

No MeSH data available.


Related in: MedlinePlus

SEM micrographs of fibrous scaffolds.a–c) 500X, scale bar = 100 μm, 1000X, scale bar = 20 μm, and 2500X, scale bar = 20 μm magnifications, respectively, for random fibrous scaffolds. d–f) 500X, scale bar = 100 μm, 1000X, scale bar = 20 μm, and 2500X, scale bar = 20 μm magnifications, respectively, for aligned fibrous scaffolds.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4383476&req=5

pone.0118724.g001: SEM micrographs of fibrous scaffolds.a–c) 500X, scale bar = 100 μm, 1000X, scale bar = 20 μm, and 2500X, scale bar = 20 μm magnifications, respectively, for random fibrous scaffolds. d–f) 500X, scale bar = 100 μm, 1000X, scale bar = 20 μm, and 2500X, scale bar = 20 μm magnifications, respectively, for aligned fibrous scaffolds.

Mentions: Random and aligned fibrous scaffolds were produced as shown in Fig. 1. The fibers were uniform in morphology. PCL random fiber scaffolds had an average fiber diameter of 9.5 ± 2.2 μm, interfiber spacing of 86.2 ± 16.4 μm, elastic modulus of 4.4 ± 1.0 MPa and an ultimate tensile stress of 1.1 ± 0.1 MPa. PCL aligned fiber scaffolds had average fiber diameters of 8.9 ± 2.1 μm, interfiber spacing of 8.4 ± 1.7 μm and 95.4 ± 4.8% degree of alignment, an elastic modulus of 5.1 ± 0.8 MPa and an ultimate tensile stress of 0.8 ± 0.1 MPa. No significant differences were detected in fiber diameters and mechanical properties between the random and aligned fibers. Significant differences were detected for interfiber spacing between random and aligned fibers (p<0.05). Porosity was 85.2 ± 1.5 for random fibers and 76.8 ± 2.9 for aligned fibers, which were also significantly different (p<0.05).


Investigating breast cancer cell behavior using tissue engineering scaffolds.

Guiro K, Patel SA, Greco SJ, Rameshwar P, Arinzeh TL - PLoS ONE (2015)

SEM micrographs of fibrous scaffolds.a–c) 500X, scale bar = 100 μm, 1000X, scale bar = 20 μm, and 2500X, scale bar = 20 μm magnifications, respectively, for random fibrous scaffolds. d–f) 500X, scale bar = 100 μm, 1000X, scale bar = 20 μm, and 2500X, scale bar = 20 μm magnifications, respectively, for aligned fibrous scaffolds.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4383476&req=5

pone.0118724.g001: SEM micrographs of fibrous scaffolds.a–c) 500X, scale bar = 100 μm, 1000X, scale bar = 20 μm, and 2500X, scale bar = 20 μm magnifications, respectively, for random fibrous scaffolds. d–f) 500X, scale bar = 100 μm, 1000X, scale bar = 20 μm, and 2500X, scale bar = 20 μm magnifications, respectively, for aligned fibrous scaffolds.
Mentions: Random and aligned fibrous scaffolds were produced as shown in Fig. 1. The fibers were uniform in morphology. PCL random fiber scaffolds had an average fiber diameter of 9.5 ± 2.2 μm, interfiber spacing of 86.2 ± 16.4 μm, elastic modulus of 4.4 ± 1.0 MPa and an ultimate tensile stress of 1.1 ± 0.1 MPa. PCL aligned fiber scaffolds had average fiber diameters of 8.9 ± 2.1 μm, interfiber spacing of 8.4 ± 1.7 μm and 95.4 ± 4.8% degree of alignment, an elastic modulus of 5.1 ± 0.8 MPa and an ultimate tensile stress of 0.8 ± 0.1 MPa. No significant differences were detected in fiber diameters and mechanical properties between the random and aligned fibers. Significant differences were detected for interfiber spacing between random and aligned fibers (p<0.05). Porosity was 85.2 ± 1.5 for random fibers and 76.8 ± 2.9 for aligned fibers, which were also significantly different (p<0.05).

Bottom Line: The majority of studies use in vitro, two-dimensional (2-D) monolayer cultures, which do not recapitulate the in vivo microenvironment.Further studies with MDA-MB-231 BCCs seeded on the scaffolds showed little to no change in cell number over time for non-treated BCCs whereas on tissue culture polystyrene (TCP), non-treated BCCs displayed a significant increase in cell number at days 4 and 7 as compared to day 1 (p<0.05).Treated BCCs did not proliferate on TCP and the fibrous scaffolds.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America.

ABSTRACT
Despite early detection through the use of mammograms and aggressive intervention, breast cancer (BC) remains a clinical dilemma. BC can resurge after >10 years of remission. Studies indicate that BC cells (BCCs) with self-renewal and chemoresistance could be involved in dormancy. The majority of studies use in vitro, two-dimensional (2-D) monolayer cultures, which do not recapitulate the in vivo microenvironment. Thus, to determine the effect of three-dimensional (3-D) microenvironment on BCCs, this study fabricated tissue engineering scaffolds made of poly (ε-caprolactone) (PCL) having aligned or random fibers. Random and aligned fibers mimic, respectively, the random and highly organized collagen fibers found in the tumor extracellular matrix. Chemoresistant BCCs were obtained by treating with carboplatin. Western blot analysis of carboplatin resistant (treated) MDA-MB-231 (highly invasive, basal-like) and T47D (low-invasive, luminal) BCCs showed an increase in Bcl-2, Oct-4 and Sox-2, suggesting protection from apoptosis and increase in stem-like markers. Further studies with MDA-MB-231 BCCs seeded on the scaffolds showed little to no change in cell number over time for non-treated BCCs whereas on tissue culture polystyrene (TCP), non-treated BCCs displayed a significant increase in cell number at days 4 and 7 as compared to day 1 (p<0.05). Treated BCCs did not proliferate on TCP and the fibrous scaffolds. Little to no cyclin D1 was expressed for non-treated BCCs on TCP. On fibrous scaffolds, non-treated BCCs stained for cyclin D1 during the 7-day culture period. Treated BCCs expressed cyclin D1 on TCP and fibrous scaffolds during the 7-day culture period. Proliferation, viability and cell cycle analysis indicated that this 3-D culture prompted the aggressive BCCs to adopt a dormant phenotype, while the treated BCCs retained their phenotype. The findings indicate that random and aligned fibrous PCL scaffolds may provide a useful system to study how the 3-D microenvironment affects the behavior of BCCs.

No MeSH data available.


Related in: MedlinePlus