Limits...
Graphene-based nanovehicles for photodynamic medical therapy.

Li Y, Dong H, Li Y, Shi D - Int J Nanomedicine (2015)

Bottom Line: By incorporation of targeting ligands or activatable agents responsive to specific biological stimulations, smart nanovehicles are established, enabling tumor-triggering release or tumor-selective accumulation of photosensitizer for effective therapy with minimum side effects.They have also been shown to behave as electron sinks for enhanced visible-light photodynamic activities.Owing to its intrinsic near infrared absorption properties, GO can be designed to combine both photodynamic and photothermal hyperthermia for optimum therapeutic efficiency.

View Article: PubMed Central - PubMed

Affiliation: Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science (iNANO), Tongji University School of Medicine, Shanghai, People's Republic of China.

ABSTRACT
Graphene and its derivatives such as graphene oxide (GO) have been widely explored as promising drug delivery vehicles for improved cancer treatment. In this review, we focus on their applications in photodynamic therapy. The large specific surface area of GO facilitates efficient loading of the photosensitizers and biological molecules via various surface functional groups. By incorporation of targeting ligands or activatable agents responsive to specific biological stimulations, smart nanovehicles are established, enabling tumor-triggering release or tumor-selective accumulation of photosensitizer for effective therapy with minimum side effects. Graphene-based nanosystems have been shown to improve the stability, bioavailability, and photodynamic efficiency of organic photosensitizer molecules. They have also been shown to behave as electron sinks for enhanced visible-light photodynamic activities. Owing to its intrinsic near infrared absorption properties, GO can be designed to combine both photodynamic and photothermal hyperthermia for optimum therapeutic efficiency. Critical issues and future aspects of photodynamic therapy research are addressed in this review.

No MeSH data available.


Related in: MedlinePlus

In vivo cancer therapy in HeLa tumor-bearing mice.Notes: (A) Changes in the relative tumor volume (n=3) after different phototherapies. PDT only showed minimal effect on tumor growth, whereas PTT alone showed improved effect on tumor growth. The combination of PDT and PTT showed optimum therapeutic effect compared to PDT only (**P<0.001) or PTT only (*P<0.01). The dual therapy resulted in complete ablation of tumor tissue and no regrowth occurred within a span of 15 days. (B) Photographs of mice with tumors on the 15th day after treatment with saline, PDT only, PTT only, and PDT–PTT combined therapy. The mice with combined therapy showed no sign of tumor regrowth and the burned skin was also healed (the arrow indicates the healed site). P-values were calculated by the Student’s t-test: *P<0.01, **P<0.001. Reprinted from Biomaterials, 34, Sahu A, Choi WI, Lee JH, Tae G, Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy, 6239–6248, Copyright ©2013, with permission from Elsevier.24Abbreviations: PDT, photodynamic therapy; PTT, photothermal therapy.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4383220&req=5

f6-ijn-10-2451: In vivo cancer therapy in HeLa tumor-bearing mice.Notes: (A) Changes in the relative tumor volume (n=3) after different phototherapies. PDT only showed minimal effect on tumor growth, whereas PTT alone showed improved effect on tumor growth. The combination of PDT and PTT showed optimum therapeutic effect compared to PDT only (**P<0.001) or PTT only (*P<0.01). The dual therapy resulted in complete ablation of tumor tissue and no regrowth occurred within a span of 15 days. (B) Photographs of mice with tumors on the 15th day after treatment with saline, PDT only, PTT only, and PDT–PTT combined therapy. The mice with combined therapy showed no sign of tumor regrowth and the burned skin was also healed (the arrow indicates the healed site). P-values were calculated by the Student’s t-test: *P<0.01, **P<0.001. Reprinted from Biomaterials, 34, Sahu A, Choi WI, Lee JH, Tae G, Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy, 6239–6248, Copyright ©2013, with permission from Elsevier.24Abbreviations: PDT, photodynamic therapy; PTT, photothermal therapy.

Mentions: Sahu et al24 prepared a Pluronic noncovalently functionalized nano-GO, which was complexed with MB for combined PDT and PTT in in vivo cancer therapy. The nano-GO–MB complex efficiently delivered MB into cancer cells and showed an enhanced anticancer effect due to the combined PDT–PTT effect. Moreover, these nanoparticles showed high tumor accumulation when intravenously injected into the tumor-bearing mice. The tumors were first irradiated with a 650-nm laser for PDT using MB and were subsequently exposed to an 808-nm laser that induced PTT by nano-GO. The in vivo results showed total ablation of tumor, indicating the pronounced synergistic effect of dual phototherapy (Figure 6).


Graphene-based nanovehicles for photodynamic medical therapy.

Li Y, Dong H, Li Y, Shi D - Int J Nanomedicine (2015)

In vivo cancer therapy in HeLa tumor-bearing mice.Notes: (A) Changes in the relative tumor volume (n=3) after different phototherapies. PDT only showed minimal effect on tumor growth, whereas PTT alone showed improved effect on tumor growth. The combination of PDT and PTT showed optimum therapeutic effect compared to PDT only (**P<0.001) or PTT only (*P<0.01). The dual therapy resulted in complete ablation of tumor tissue and no regrowth occurred within a span of 15 days. (B) Photographs of mice with tumors on the 15th day after treatment with saline, PDT only, PTT only, and PDT–PTT combined therapy. The mice with combined therapy showed no sign of tumor regrowth and the burned skin was also healed (the arrow indicates the healed site). P-values were calculated by the Student’s t-test: *P<0.01, **P<0.001. Reprinted from Biomaterials, 34, Sahu A, Choi WI, Lee JH, Tae G, Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy, 6239–6248, Copyright ©2013, with permission from Elsevier.24Abbreviations: PDT, photodynamic therapy; PTT, photothermal therapy.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4383220&req=5

f6-ijn-10-2451: In vivo cancer therapy in HeLa tumor-bearing mice.Notes: (A) Changes in the relative tumor volume (n=3) after different phototherapies. PDT only showed minimal effect on tumor growth, whereas PTT alone showed improved effect on tumor growth. The combination of PDT and PTT showed optimum therapeutic effect compared to PDT only (**P<0.001) or PTT only (*P<0.01). The dual therapy resulted in complete ablation of tumor tissue and no regrowth occurred within a span of 15 days. (B) Photographs of mice with tumors on the 15th day after treatment with saline, PDT only, PTT only, and PDT–PTT combined therapy. The mice with combined therapy showed no sign of tumor regrowth and the burned skin was also healed (the arrow indicates the healed site). P-values were calculated by the Student’s t-test: *P<0.01, **P<0.001. Reprinted from Biomaterials, 34, Sahu A, Choi WI, Lee JH, Tae G, Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy, 6239–6248, Copyright ©2013, with permission from Elsevier.24Abbreviations: PDT, photodynamic therapy; PTT, photothermal therapy.
Mentions: Sahu et al24 prepared a Pluronic noncovalently functionalized nano-GO, which was complexed with MB for combined PDT and PTT in in vivo cancer therapy. The nano-GO–MB complex efficiently delivered MB into cancer cells and showed an enhanced anticancer effect due to the combined PDT–PTT effect. Moreover, these nanoparticles showed high tumor accumulation when intravenously injected into the tumor-bearing mice. The tumors were first irradiated with a 650-nm laser for PDT using MB and were subsequently exposed to an 808-nm laser that induced PTT by nano-GO. The in vivo results showed total ablation of tumor, indicating the pronounced synergistic effect of dual phototherapy (Figure 6).

Bottom Line: By incorporation of targeting ligands or activatable agents responsive to specific biological stimulations, smart nanovehicles are established, enabling tumor-triggering release or tumor-selective accumulation of photosensitizer for effective therapy with minimum side effects.They have also been shown to behave as electron sinks for enhanced visible-light photodynamic activities.Owing to its intrinsic near infrared absorption properties, GO can be designed to combine both photodynamic and photothermal hyperthermia for optimum therapeutic efficiency.

View Article: PubMed Central - PubMed

Affiliation: Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science (iNANO), Tongji University School of Medicine, Shanghai, People's Republic of China.

ABSTRACT
Graphene and its derivatives such as graphene oxide (GO) have been widely explored as promising drug delivery vehicles for improved cancer treatment. In this review, we focus on their applications in photodynamic therapy. The large specific surface area of GO facilitates efficient loading of the photosensitizers and biological molecules via various surface functional groups. By incorporation of targeting ligands or activatable agents responsive to specific biological stimulations, smart nanovehicles are established, enabling tumor-triggering release or tumor-selective accumulation of photosensitizer for effective therapy with minimum side effects. Graphene-based nanosystems have been shown to improve the stability, bioavailability, and photodynamic efficiency of organic photosensitizer molecules. They have also been shown to behave as electron sinks for enhanced visible-light photodynamic activities. Owing to its intrinsic near infrared absorption properties, GO can be designed to combine both photodynamic and photothermal hyperthermia for optimum therapeutic efficiency. Critical issues and future aspects of photodynamic therapy research are addressed in this review.

No MeSH data available.


Related in: MedlinePlus