Limits...
Trauma-induced coagulopathy: impact of the early coagulation support protocol on blood product consumption, mortality and costs.

Nardi G, Agostini V, Rondinelli B, Russo E, Bastianini B, Bini G, Bulgarelli S, Cingolani E, Donato A, Gambale G, Ranaldi G - Crit Care (2015)

Bottom Line: Mortality in 2013 was 13.5% versus 20% in 2011 (13 versus 26 hospital deaths, respectively) (nonsignificant).When costs for blood components, factors and point-of-care tests were compared, a €76,340 saving in 2013 versus 2011 (23%) was recorded.The introduction of the ECS protocol in two Italian trauma centers was associated with a marked reduction in blood product consumption, reaching statistical significance for plasma and platelets, and with a non-significant trend toward a reduction in early and 28-day mortality.

View Article: PubMed Central - PubMed

Affiliation: Department of Shock and Trauma Center, S Camillo-Forlanini Hospital, Circonvallazione Gianicolense 87, Roma, 00152, Italy. gnardi@scamilloforlanini.rm.it.

ABSTRACT

Introduction: Hemorrhage is the principal cause of death in the first few hours following severe injury. Coagulopathy is a frequent complication of critical bleeding. A network of Italian trauma centers recently developed a protocol to prevent and treat trauma-induced coagulopathy. A pre-post cohort multicenter study was conducted to assess the impact of the early coagulation support (ECS) protocol on blood products consumption, mortality and treatment costs.

Methods: We prospectively collected data from all severely injured patients (Injury Severity Score (ISS) >15) admitted to two trauma centers in 2013 and compared these findings with the data for 2011. Patients transfused with at least 3 units of packed red blood cells (PRBCs) within 24 hours of an accident were included in the study. In 2011, patients with significant hemorrhaging were treated with early administration of plasma with the aim of achieving a high (≥1:2) plasma-to-PRBC ratio. In 2013, the ECS protocol was the treatment strategy. Outcome data, blood product consumption and treatment costs were compared between the two periods.

Results: The two groups were well matched for demographics, injury severity (ISS: 32.9 in 2011 versus 33.6 in 2013) and clinical and laboratory data on admission. In 2013, a 40% overall reduction in PRBCs was observed, together with a 65% reduction in plasma and a 52% reduction in platelets. Patients in the ECS group received fewer blood products: 6.51 units of PRBCs versus 8.14 units. Plasma transfusions decreased from 8.98 units to 4.21 units (P <0.05), and platelets fell from 4.14 units to 2.53 units (P <0.05). Mortality in 2013 was 13.5% versus 20% in 2011 (13 versus 26 hospital deaths, respectively) (nonsignificant). When costs for blood components, factors and point-of-care tests were compared, a €76,340 saving in 2013 versus 2011 (23%) was recorded.

Conclusions: The introduction of the ECS protocol in two Italian trauma centers was associated with a marked reduction in blood product consumption, reaching statistical significance for plasma and platelets, and with a non-significant trend toward a reduction in early and 28-day mortality. The overall costs for transfusion and coagulation support (including point-of-care tests) decreased by 23% between 2011 and 2013.

Show MeSH

Related in: MedlinePlus

Changes in the number of plasma units transfused related to the amount of packed red blood cells before and after introduction of early coagulation support. PRBC, Units of packed red blood cells.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4383211&req=5

Fig2: Changes in the number of plasma units transfused related to the amount of packed red blood cells before and after introduction of early coagulation support. PRBC, Units of packed red blood cells.

Mentions: In our study, the number of severe trauma patients (ISS >15) who received ≥3 U of blood was 30% lower in 2013 than in 2011. This difference was independent of any change in the number of major trauma admissions to the two trauma centers and any change in the severity index of the admitted patients. In 2011, immediate administration of plasma to bleeding patients was the cornerstone of coagulation support. The plasma-to-PRBC ratio in 2011 was approximately 1:1 for each amount of PRBC transfused (Table 4). Early and aggressive administration of plasma may result in diluting the blood cells with a decrease in hemoglobin level [20]. This may also reduce PTL marginalization with a potentially negative impact on PTL activation. Moreover, as 7 to 9 g/dl hemoglobin was the transfusion trigger proposed in the 2010 European guidelines [5], the 2011 plasma-based strategy might have triggered a higher amount of blood transfusion, thus increasing the number of patients who received ≥3 U of PRBC. The data on plasma transfusion support this hypothesis. Among the patients transfused with 3 U of blood, the percentage of those who received plasma decreased by more than half in 2013 compared with 2011 (27% versus 56%, respectively), and the average number of units of plasma used in 2013 was less than one-third that used in 2011 (1.2 versus 4.1, respectively). In 2013, the overall number of PRBC units was reduced by 40%, plasma units by 65% and PTL by 52%. Two different reasons are believed to have contributed to the observed decrease in the consumption of blood components: fewer patients who met the study criteria in 2011 compared with 2013 and a reduction in the average amount of PRBCs, plasma and PTL received by each one of the patients in the 2013 group. This difference was statistically significant for plasma and PTL. We observed a consistent reduction of the plasma-to-PRBC ratio for each amount of PRBC transfused (Figure 2). Data in the literature show that early and aggressive plasma transfusion improves the survival of trauma patients with critical bleeding [21-23]. However, availability of pre-thawed plasma is not common in European trauma centers, making early plasma transfusion more a wish than a reality [24]. The average time to start plasma administration in the patients in our 2011 control group was 67 (8-90) minutes. Therefore, the administration of factors as recommended by the ECS protocol might significantly anticipate coagulation support. If fibrinogen concentrate is administered to increase fibrinogen level, there might be less need to transfuse plasma as a source of fibrinogen. Therefore, the lower plasma-to-PRBC ratio we observed in 2013 may be a consequence of the ECS strategy.Figure 2


Trauma-induced coagulopathy: impact of the early coagulation support protocol on blood product consumption, mortality and costs.

Nardi G, Agostini V, Rondinelli B, Russo E, Bastianini B, Bini G, Bulgarelli S, Cingolani E, Donato A, Gambale G, Ranaldi G - Crit Care (2015)

Changes in the number of plasma units transfused related to the amount of packed red blood cells before and after introduction of early coagulation support. PRBC, Units of packed red blood cells.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4383211&req=5

Fig2: Changes in the number of plasma units transfused related to the amount of packed red blood cells before and after introduction of early coagulation support. PRBC, Units of packed red blood cells.
Mentions: In our study, the number of severe trauma patients (ISS >15) who received ≥3 U of blood was 30% lower in 2013 than in 2011. This difference was independent of any change in the number of major trauma admissions to the two trauma centers and any change in the severity index of the admitted patients. In 2011, immediate administration of plasma to bleeding patients was the cornerstone of coagulation support. The plasma-to-PRBC ratio in 2011 was approximately 1:1 for each amount of PRBC transfused (Table 4). Early and aggressive administration of plasma may result in diluting the blood cells with a decrease in hemoglobin level [20]. This may also reduce PTL marginalization with a potentially negative impact on PTL activation. Moreover, as 7 to 9 g/dl hemoglobin was the transfusion trigger proposed in the 2010 European guidelines [5], the 2011 plasma-based strategy might have triggered a higher amount of blood transfusion, thus increasing the number of patients who received ≥3 U of PRBC. The data on plasma transfusion support this hypothesis. Among the patients transfused with 3 U of blood, the percentage of those who received plasma decreased by more than half in 2013 compared with 2011 (27% versus 56%, respectively), and the average number of units of plasma used in 2013 was less than one-third that used in 2011 (1.2 versus 4.1, respectively). In 2013, the overall number of PRBC units was reduced by 40%, plasma units by 65% and PTL by 52%. Two different reasons are believed to have contributed to the observed decrease in the consumption of blood components: fewer patients who met the study criteria in 2011 compared with 2013 and a reduction in the average amount of PRBCs, plasma and PTL received by each one of the patients in the 2013 group. This difference was statistically significant for plasma and PTL. We observed a consistent reduction of the plasma-to-PRBC ratio for each amount of PRBC transfused (Figure 2). Data in the literature show that early and aggressive plasma transfusion improves the survival of trauma patients with critical bleeding [21-23]. However, availability of pre-thawed plasma is not common in European trauma centers, making early plasma transfusion more a wish than a reality [24]. The average time to start plasma administration in the patients in our 2011 control group was 67 (8-90) minutes. Therefore, the administration of factors as recommended by the ECS protocol might significantly anticipate coagulation support. If fibrinogen concentrate is administered to increase fibrinogen level, there might be less need to transfuse plasma as a source of fibrinogen. Therefore, the lower plasma-to-PRBC ratio we observed in 2013 may be a consequence of the ECS strategy.Figure 2

Bottom Line: Mortality in 2013 was 13.5% versus 20% in 2011 (13 versus 26 hospital deaths, respectively) (nonsignificant).When costs for blood components, factors and point-of-care tests were compared, a €76,340 saving in 2013 versus 2011 (23%) was recorded.The introduction of the ECS protocol in two Italian trauma centers was associated with a marked reduction in blood product consumption, reaching statistical significance for plasma and platelets, and with a non-significant trend toward a reduction in early and 28-day mortality.

View Article: PubMed Central - PubMed

Affiliation: Department of Shock and Trauma Center, S Camillo-Forlanini Hospital, Circonvallazione Gianicolense 87, Roma, 00152, Italy. gnardi@scamilloforlanini.rm.it.

ABSTRACT

Introduction: Hemorrhage is the principal cause of death in the first few hours following severe injury. Coagulopathy is a frequent complication of critical bleeding. A network of Italian trauma centers recently developed a protocol to prevent and treat trauma-induced coagulopathy. A pre-post cohort multicenter study was conducted to assess the impact of the early coagulation support (ECS) protocol on blood products consumption, mortality and treatment costs.

Methods: We prospectively collected data from all severely injured patients (Injury Severity Score (ISS) >15) admitted to two trauma centers in 2013 and compared these findings with the data for 2011. Patients transfused with at least 3 units of packed red blood cells (PRBCs) within 24 hours of an accident were included in the study. In 2011, patients with significant hemorrhaging were treated with early administration of plasma with the aim of achieving a high (≥1:2) plasma-to-PRBC ratio. In 2013, the ECS protocol was the treatment strategy. Outcome data, blood product consumption and treatment costs were compared between the two periods.

Results: The two groups were well matched for demographics, injury severity (ISS: 32.9 in 2011 versus 33.6 in 2013) and clinical and laboratory data on admission. In 2013, a 40% overall reduction in PRBCs was observed, together with a 65% reduction in plasma and a 52% reduction in platelets. Patients in the ECS group received fewer blood products: 6.51 units of PRBCs versus 8.14 units. Plasma transfusions decreased from 8.98 units to 4.21 units (P <0.05), and platelets fell from 4.14 units to 2.53 units (P <0.05). Mortality in 2013 was 13.5% versus 20% in 2011 (13 versus 26 hospital deaths, respectively) (nonsignificant). When costs for blood components, factors and point-of-care tests were compared, a €76,340 saving in 2013 versus 2011 (23%) was recorded.

Conclusions: The introduction of the ECS protocol in two Italian trauma centers was associated with a marked reduction in blood product consumption, reaching statistical significance for plasma and platelets, and with a non-significant trend toward a reduction in early and 28-day mortality. The overall costs for transfusion and coagulation support (including point-of-care tests) decreased by 23% between 2011 and 2013.

Show MeSH
Related in: MedlinePlus