Limits...
Male mice song syntax depends on social contexts and influences female preferences.

Chabout J, Sarkar A, Dunson DB, Jarvis ED - Front Behav Neurosci (2015)

Bottom Line: Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine.Playback experiments show that the females prefer the complex songs over the simpler ones.We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurobiology, Duke University Medical Center Durham, NC, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA.

ABSTRACT
In 2005, Holy and Guo advanced the idea that male mice produce ultrasonic vocalizations (USV) with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other) and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.

No MeSH data available.


Related in: MedlinePlus

Female choices between playbacks of complex and simple songs. (A) Schematic representation of the behavioral paradigm used. (B) Time (in seconds) spent by the females in each arm playing either the UR or FE song from the first, (C) second, (D) and third exemplar males. Paired t-test: first t9 = 2.65, p = 0.02; second: t8 = 2.67, p = 0.028; third: t6 = 4.38, p = 0.004. Data are presented for B6D2F1/J female mice as mean ± SEM. *p < 0.05 for Student's t-test.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4383150&req=5

Figure 12: Female choices between playbacks of complex and simple songs. (A) Schematic representation of the behavioral paradigm used. (B) Time (in seconds) spent by the females in each arm playing either the UR or FE song from the first, (C) second, (D) and third exemplar males. Paired t-test: first t9 = 2.65, p = 0.02; second: t8 = 2.67, p = 0.028; third: t6 = 4.38, p = 0.004. Data are presented for B6D2F1/J female mice as mean ± SEM. *p < 0.05 for Student's t-test.

Mentions: To determine if the females could detect and thus show a preference for song from different contexts, we placed them in a Y-maze choice test and simultaneously played back songs of the same males from the urine and the awake female contexts in each arm of the Y maze, controlling for song duration and loudness (Figure 12A). The female urine stimulated songs (from UR) from three males contained a majority of “d,” “u,” and “m” syllables, whereas their awake and behaving or anesthetized female-stimulated songs (from FE and AF) contained mostly simple “s” syllables (Figures 12, S2, S3). We found that one female in the second male exemplar test, and three females in the third exemplar test had strong side biases (chose one side >75% of the time, regardless of song, even after re-testing). It seems that the side bias of females increases with the number of test sessions. Analyzing all sessions without a side bias (n = 10, n = 9, and n = 7 females, for male examples 1, 2, and 3, respectively), we found that nearly all females spent more time (on average ~30% more) in the arm which had the complex stimulated urine song from all three males than in the arm with the simple song that was played simultaneously (Figures 12B–D). However, two different females showed the opposite preference for one exemplar song pair each (Figures 12B–C). We believe that the females show a preference rather than an avoidance of the other song, because although they had the choice to return to the arm of the Y maze without song playbacks, they instead went back and forth in the arm with the two songs and chose one of them more often. These preferences could easily be seen in individual animals, where from one session to the next as the side of complex song was switched, so did the female go and switch the amount of time spent near the speaker for that song.


Male mice song syntax depends on social contexts and influences female preferences.

Chabout J, Sarkar A, Dunson DB, Jarvis ED - Front Behav Neurosci (2015)

Female choices between playbacks of complex and simple songs. (A) Schematic representation of the behavioral paradigm used. (B) Time (in seconds) spent by the females in each arm playing either the UR or FE song from the first, (C) second, (D) and third exemplar males. Paired t-test: first t9 = 2.65, p = 0.02; second: t8 = 2.67, p = 0.028; third: t6 = 4.38, p = 0.004. Data are presented for B6D2F1/J female mice as mean ± SEM. *p < 0.05 for Student's t-test.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4383150&req=5

Figure 12: Female choices between playbacks of complex and simple songs. (A) Schematic representation of the behavioral paradigm used. (B) Time (in seconds) spent by the females in each arm playing either the UR or FE song from the first, (C) second, (D) and third exemplar males. Paired t-test: first t9 = 2.65, p = 0.02; second: t8 = 2.67, p = 0.028; third: t6 = 4.38, p = 0.004. Data are presented for B6D2F1/J female mice as mean ± SEM. *p < 0.05 for Student's t-test.
Mentions: To determine if the females could detect and thus show a preference for song from different contexts, we placed them in a Y-maze choice test and simultaneously played back songs of the same males from the urine and the awake female contexts in each arm of the Y maze, controlling for song duration and loudness (Figure 12A). The female urine stimulated songs (from UR) from three males contained a majority of “d,” “u,” and “m” syllables, whereas their awake and behaving or anesthetized female-stimulated songs (from FE and AF) contained mostly simple “s” syllables (Figures 12, S2, S3). We found that one female in the second male exemplar test, and three females in the third exemplar test had strong side biases (chose one side >75% of the time, regardless of song, even after re-testing). It seems that the side bias of females increases with the number of test sessions. Analyzing all sessions without a side bias (n = 10, n = 9, and n = 7 females, for male examples 1, 2, and 3, respectively), we found that nearly all females spent more time (on average ~30% more) in the arm which had the complex stimulated urine song from all three males than in the arm with the simple song that was played simultaneously (Figures 12B–D). However, two different females showed the opposite preference for one exemplar song pair each (Figures 12B–C). We believe that the females show a preference rather than an avoidance of the other song, because although they had the choice to return to the arm of the Y maze without song playbacks, they instead went back and forth in the arm with the two songs and chose one of them more often. These preferences could easily be seen in individual animals, where from one session to the next as the side of complex song was switched, so did the female go and switch the amount of time spent near the speaker for that song.

Bottom Line: Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine.Playback experiments show that the females prefer the complex songs over the simpler ones.We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurobiology, Duke University Medical Center Durham, NC, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA.

ABSTRACT
In 2005, Holy and Guo advanced the idea that male mice produce ultrasonic vocalizations (USV) with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other) and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.

No MeSH data available.


Related in: MedlinePlus