Limits...
Male mice song syntax depends on social contexts and influences female preferences.

Chabout J, Sarkar A, Dunson DB, Jarvis ED - Front Behav Neurosci (2015)

Bottom Line: Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine.Playback experiments show that the females prefer the complex songs over the simpler ones.We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurobiology, Duke University Medical Center Durham, NC, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA.

ABSTRACT
In 2005, Holy and Guo advanced the idea that male mice produce ultrasonic vocalizations (USV) with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other) and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.

No MeSH data available.


Related in: MedlinePlus

Ratio of complex songs over simple songs. Shown is number of sequences with 2 or more complex “m” syllables divided by the number of sequences with 1 or no “m” syllables in each context. Sequences with less than 2 syllables total were not included. Data are presented are mean ± sem. *p < 0.041, **p < 0.005 for post-hoc Student's paired t-test (n = 12 males).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4383150&req=5

Figure 11: Ratio of complex songs over simple songs. Shown is number of sequences with 2 or more complex “m” syllables divided by the number of sequences with 1 or no “m” syllables in each context. Sequences with less than 2 syllables total were not included. Data are presented are mean ± sem. *p < 0.041, **p < 0.005 for post-hoc Student's paired t-test (n = 12 males).

Mentions: We noted that although the repertoire composition in all contexts was dominated by the simple “s” syllable type (Figure 3B), examination of sonograms of long sequences suggested to us that the proportion of sequences with complex syllables also varied with context. To quantify this difference, we measured the ratio of complex sequences (composed by at least 2 occurrences of the “m” syllable type) vs. simple sequences (composed of one or no “m” types, and thus mostly by “s” type). As suggested by the sonograms and syntax diagrams, we observed that male mice exposed to female urine (UR) produced 2.3X–15X higher ratios of sequences with complex “m” syllables relative to other contexts (Figure 11; Table S5). Indeed, in each of the FE, AF, and AM contexts, the males produced successively fewer sequences with 2 or more “m” syllables. This finding indicates that not only are there more complex syllables produced in the urine context, but also that such syllables are distributed over more sequences, whereas in the other context, fewer complex syllables are restricted to proportionally fewer sequences.


Male mice song syntax depends on social contexts and influences female preferences.

Chabout J, Sarkar A, Dunson DB, Jarvis ED - Front Behav Neurosci (2015)

Ratio of complex songs over simple songs. Shown is number of sequences with 2 or more complex “m” syllables divided by the number of sequences with 1 or no “m” syllables in each context. Sequences with less than 2 syllables total were not included. Data are presented are mean ± sem. *p < 0.041, **p < 0.005 for post-hoc Student's paired t-test (n = 12 males).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4383150&req=5

Figure 11: Ratio of complex songs over simple songs. Shown is number of sequences with 2 or more complex “m” syllables divided by the number of sequences with 1 or no “m” syllables in each context. Sequences with less than 2 syllables total were not included. Data are presented are mean ± sem. *p < 0.041, **p < 0.005 for post-hoc Student's paired t-test (n = 12 males).
Mentions: We noted that although the repertoire composition in all contexts was dominated by the simple “s” syllable type (Figure 3B), examination of sonograms of long sequences suggested to us that the proportion of sequences with complex syllables also varied with context. To quantify this difference, we measured the ratio of complex sequences (composed by at least 2 occurrences of the “m” syllable type) vs. simple sequences (composed of one or no “m” types, and thus mostly by “s” type). As suggested by the sonograms and syntax diagrams, we observed that male mice exposed to female urine (UR) produced 2.3X–15X higher ratios of sequences with complex “m” syllables relative to other contexts (Figure 11; Table S5). Indeed, in each of the FE, AF, and AM contexts, the males produced successively fewer sequences with 2 or more “m” syllables. This finding indicates that not only are there more complex syllables produced in the urine context, but also that such syllables are distributed over more sequences, whereas in the other context, fewer complex syllables are restricted to proportionally fewer sequences.

Bottom Line: Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine.Playback experiments show that the females prefer the complex songs over the simpler ones.We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurobiology, Duke University Medical Center Durham, NC, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA.

ABSTRACT
In 2005, Holy and Guo advanced the idea that male mice produce ultrasonic vocalizations (USV) with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other) and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.

No MeSH data available.


Related in: MedlinePlus