Limits...
Male mice song syntax depends on social contexts and influences female preferences.

Chabout J, Sarkar A, Dunson DB, Jarvis ED - Front Behav Neurosci (2015)

Bottom Line: Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine.Playback experiments show that the females prefer the complex songs over the simpler ones.We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurobiology, Duke University Medical Center Durham, NC, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA.

ABSTRACT
In 2005, Holy and Guo advanced the idea that male mice produce ultrasonic vocalizations (USV) with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other) and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.

No MeSH data available.


Related in: MedlinePlus

Characteristics of individual syllables in different contexts. (A) Amplitude of individual syllable types. NS, Non significant. (B) Duration of individual syllable types. (C) Pitch (frequency mean) of individual syllable types. Data are presented as mean ± SEM (n = 12 males). *p < 0.05, **p < 0.005, ***p < 0.0001 for post-hoc Student's paired t-test after Benjamini and Hochberg correction. NS, Non significant.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4383150&req=5

Figure 6: Characteristics of individual syllables in different contexts. (A) Amplitude of individual syllable types. NS, Non significant. (B) Duration of individual syllable types. (C) Pitch (frequency mean) of individual syllable types. Data are presented as mean ± SEM (n = 12 males). *p < 0.05, **p < 0.005, ***p < 0.0001 for post-hoc Student's paired t-test after Benjamini and Hochberg correction. NS, Non significant.

Mentions: We also noticed that the males produced syllables up to four times louder in the urine condition than in all the other conditions (Figure 5A; Table S2A). Analyzing syllables individually, all had louder means in the urine context, and “s” and “d” statistically so, but after Benjamini and Hochberg correction these differences were not significant (Figure 6A; Table S3A). We interpret this difference in analyses to indicate that there is a high degree of variance in the loudness, and that the significant difference in loudness is seen with a larger sample size of all syllables combined. Males produced their syllables with longer duration and higher in the urine and awake female context relative to other context, with the shortest duration in the anesthetized male context (Figure 5B; Table S2B). The differences in duration were mainly due to longer “s” type syllables in the UR context and the three other types of syllable syllables in the awake female context (Figure 6B; Table S3B). Pitch (frequency mean) followed a similar pattern (Figure 5C; Table S2C), although this trend existed comparably for all syllable types (Figure 6C; Table S3C). Syllable bandwidth also followed the same pattern (Figure 5D; Table S2D), consistent with the males singing more complex syllables in the urine condition. In contrast, syllable spectral purity was highest when they sang to awake females (FE; Figure 5E; Table S2E), indicating that songs emitted in the awake female condition are sharper than in all the other contexts. The fact that pattern of spectral purity is not an entirely inverse pattern of bandwidth, is consistent with our calculations of spectral purity and bandwidth measuring different aspects of syllable structure.


Male mice song syntax depends on social contexts and influences female preferences.

Chabout J, Sarkar A, Dunson DB, Jarvis ED - Front Behav Neurosci (2015)

Characteristics of individual syllables in different contexts. (A) Amplitude of individual syllable types. NS, Non significant. (B) Duration of individual syllable types. (C) Pitch (frequency mean) of individual syllable types. Data are presented as mean ± SEM (n = 12 males). *p < 0.05, **p < 0.005, ***p < 0.0001 for post-hoc Student's paired t-test after Benjamini and Hochberg correction. NS, Non significant.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4383150&req=5

Figure 6: Characteristics of individual syllables in different contexts. (A) Amplitude of individual syllable types. NS, Non significant. (B) Duration of individual syllable types. (C) Pitch (frequency mean) of individual syllable types. Data are presented as mean ± SEM (n = 12 males). *p < 0.05, **p < 0.005, ***p < 0.0001 for post-hoc Student's paired t-test after Benjamini and Hochberg correction. NS, Non significant.
Mentions: We also noticed that the males produced syllables up to four times louder in the urine condition than in all the other conditions (Figure 5A; Table S2A). Analyzing syllables individually, all had louder means in the urine context, and “s” and “d” statistically so, but after Benjamini and Hochberg correction these differences were not significant (Figure 6A; Table S3A). We interpret this difference in analyses to indicate that there is a high degree of variance in the loudness, and that the significant difference in loudness is seen with a larger sample size of all syllables combined. Males produced their syllables with longer duration and higher in the urine and awake female context relative to other context, with the shortest duration in the anesthetized male context (Figure 5B; Table S2B). The differences in duration were mainly due to longer “s” type syllables in the UR context and the three other types of syllable syllables in the awake female context (Figure 6B; Table S3B). Pitch (frequency mean) followed a similar pattern (Figure 5C; Table S2C), although this trend existed comparably for all syllable types (Figure 6C; Table S3C). Syllable bandwidth also followed the same pattern (Figure 5D; Table S2D), consistent with the males singing more complex syllables in the urine condition. In contrast, syllable spectral purity was highest when they sang to awake females (FE; Figure 5E; Table S2E), indicating that songs emitted in the awake female condition are sharper than in all the other contexts. The fact that pattern of spectral purity is not an entirely inverse pattern of bandwidth, is consistent with our calculations of spectral purity and bandwidth measuring different aspects of syllable structure.

Bottom Line: Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine.Playback experiments show that the females prefer the complex songs over the simpler ones.We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurobiology, Duke University Medical Center Durham, NC, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA.

ABSTRACT
In 2005, Holy and Guo advanced the idea that male mice produce ultrasonic vocalizations (USV) with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other) and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.

No MeSH data available.


Related in: MedlinePlus