Limits...
Male mice song syntax depends on social contexts and influences female preferences.

Chabout J, Sarkar A, Dunson DB, Jarvis ED - Front Behav Neurosci (2015)

Bottom Line: Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine.Playback experiments show that the females prefer the complex songs over the simpler ones.We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurobiology, Duke University Medical Center Durham, NC, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA.

ABSTRACT
In 2005, Holy and Guo advanced the idea that male mice produce ultrasonic vocalizations (USV) with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other) and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.

No MeSH data available.


Related in: MedlinePlus

Variety of ultrasonic songs examples in male mice recorded in different conditions. (A) urine (UR), (B) live female (FE), (C) anesthetized female (AF), (D) anesthetized male (AM) conditions. “s” represents the simple syllables without any frequency jumps, “d” and “u” represent syllables with only one frequency jump, and “m” syllables with multiple frequency jumps.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4383150&req=5

Figure 4: Variety of ultrasonic songs examples in male mice recorded in different conditions. (A) urine (UR), (B) live female (FE), (C) anesthetized female (AF), (D) anesthetized male (AM) conditions. “s” represents the simple syllables without any frequency jumps, “d” and “u” represent syllables with only one frequency jump, and “m” syllables with multiple frequency jumps.

Mentions: Under the conditions that elicited sufficient syllables from enough animals to perform statistical analyses (more than 10 syllables per individual per condition), we noted qualitative and quantitative differences in repertoire composition between social contexts. In all contexts, male mice produced the simpler syllable type without pitch jumps, “s,” more often than all other types (Figure 3B). However, in the presence of fresh female urine they produced significantly less “s” type, and more down “d” and multiple “m” pitch jump types (Figure 3B; Table S1B). The relative proportion of the up “u” pitch jump syllable was similar across contexts. Interestingly, the low standard error of the mean of repertoire composition for each syllable type among animals for each context demonstrates that the differences among contexts are very similar for each animal. These quantitative song differences in context were qualitatively seen in sonograms of songs of 1 s or longer (Figure 4). We interpret these findings to mean that males produce complex syllables more often in response to female urine than in response to live animals.


Male mice song syntax depends on social contexts and influences female preferences.

Chabout J, Sarkar A, Dunson DB, Jarvis ED - Front Behav Neurosci (2015)

Variety of ultrasonic songs examples in male mice recorded in different conditions. (A) urine (UR), (B) live female (FE), (C) anesthetized female (AF), (D) anesthetized male (AM) conditions. “s” represents the simple syllables without any frequency jumps, “d” and “u” represent syllables with only one frequency jump, and “m” syllables with multiple frequency jumps.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4383150&req=5

Figure 4: Variety of ultrasonic songs examples in male mice recorded in different conditions. (A) urine (UR), (B) live female (FE), (C) anesthetized female (AF), (D) anesthetized male (AM) conditions. “s” represents the simple syllables without any frequency jumps, “d” and “u” represent syllables with only one frequency jump, and “m” syllables with multiple frequency jumps.
Mentions: Under the conditions that elicited sufficient syllables from enough animals to perform statistical analyses (more than 10 syllables per individual per condition), we noted qualitative and quantitative differences in repertoire composition between social contexts. In all contexts, male mice produced the simpler syllable type without pitch jumps, “s,” more often than all other types (Figure 3B). However, in the presence of fresh female urine they produced significantly less “s” type, and more down “d” and multiple “m” pitch jump types (Figure 3B; Table S1B). The relative proportion of the up “u” pitch jump syllable was similar across contexts. Interestingly, the low standard error of the mean of repertoire composition for each syllable type among animals for each context demonstrates that the differences among contexts are very similar for each animal. These quantitative song differences in context were qualitatively seen in sonograms of songs of 1 s or longer (Figure 4). We interpret these findings to mean that males produce complex syllables more often in response to female urine than in response to live animals.

Bottom Line: Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine.Playback experiments show that the females prefer the complex songs over the simpler ones.We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurobiology, Duke University Medical Center Durham, NC, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA.

ABSTRACT
In 2005, Holy and Guo advanced the idea that male mice produce ultrasonic vocalizations (USV) with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other) and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.

No MeSH data available.


Related in: MedlinePlus