Limits...
Experimental validation of the new modular application of the upper bound theorem in indentation.

Bermudo C, Martín F, Martín MJ, Sevilla L - PLoS ONE (2015)

Bottom Line: The analytical model is originated from the Upper Bound Theorem application by means of its new modular distribution.The experimental validation is performed through a series of indentation tests with work-pieces of annealed aluminium EN AW-2030 and punches of steel AISI 304, under plane strain conditions.The results are compared with the ones obtained from the application of this new modular distribution of the Upper Bound Theorem, showing a good approximation and suitability of the model developed for an indentation-based process.

View Article: PubMed Central - PubMed

Affiliation: Department of Civil, Material and Manufacturing Engineering, University of Malaga, Malaga, Spain.

ABSTRACT
Nowadays, thanks to the new manufacturing processes, indentation is becoming an essential part of the new arising processes such as the Incremental Forming Processes. This work presents the experimental validation of the analytical model developed for an indentation-based process. The analytical model is originated from the Upper Bound Theorem application by means of its new modular distribution. The modules considered are composed of two Triangular Rigid Zones each. The experimental validation is performed through a series of indentation tests with work-pieces of annealed aluminium EN AW-2030 and punches of steel AISI 304, under plane strain conditions. The results are compared with the ones obtained from the application of this new modular distribution of the Upper Bound Theorem, showing a good approximation and suitability of the model developed for an indentation-based process.

No MeSH data available.


Related in: MedlinePlus

Annealing cycle.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4380347&req=5

pone.0122790.g004: Annealing cycle.

Mentions: To achieve an adequate depth during the indentation test by providing strain values lower or equal to 100 kN, the aluminium work-pieces need to be processed. The material is subjected to a controlled annealing treatment (Fig 4), thereby attaining aluminium work-pieces with different properties from the initial work-pieces subtracted from the aluminium bar. This new aluminium state allows bigger deformations with lower efforts so that it can be plastically deformed with ease using the available tension-compression machine.


Experimental validation of the new modular application of the upper bound theorem in indentation.

Bermudo C, Martín F, Martín MJ, Sevilla L - PLoS ONE (2015)

Annealing cycle.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4380347&req=5

pone.0122790.g004: Annealing cycle.
Mentions: To achieve an adequate depth during the indentation test by providing strain values lower or equal to 100 kN, the aluminium work-pieces need to be processed. The material is subjected to a controlled annealing treatment (Fig 4), thereby attaining aluminium work-pieces with different properties from the initial work-pieces subtracted from the aluminium bar. This new aluminium state allows bigger deformations with lower efforts so that it can be plastically deformed with ease using the available tension-compression machine.

Bottom Line: The analytical model is originated from the Upper Bound Theorem application by means of its new modular distribution.The experimental validation is performed through a series of indentation tests with work-pieces of annealed aluminium EN AW-2030 and punches of steel AISI 304, under plane strain conditions.The results are compared with the ones obtained from the application of this new modular distribution of the Upper Bound Theorem, showing a good approximation and suitability of the model developed for an indentation-based process.

View Article: PubMed Central - PubMed

Affiliation: Department of Civil, Material and Manufacturing Engineering, University of Malaga, Malaga, Spain.

ABSTRACT
Nowadays, thanks to the new manufacturing processes, indentation is becoming an essential part of the new arising processes such as the Incremental Forming Processes. This work presents the experimental validation of the analytical model developed for an indentation-based process. The analytical model is originated from the Upper Bound Theorem application by means of its new modular distribution. The modules considered are composed of two Triangular Rigid Zones each. The experimental validation is performed through a series of indentation tests with work-pieces of annealed aluminium EN AW-2030 and punches of steel AISI 304, under plane strain conditions. The results are compared with the ones obtained from the application of this new modular distribution of the Upper Bound Theorem, showing a good approximation and suitability of the model developed for an indentation-based process.

No MeSH data available.


Related in: MedlinePlus