Limits...
The role of simulation in intertemporal choices.

O'Connell G, Christakou A, Chakrabarti B - Front Neurosci (2015)

Bottom Line: In this article, we develop a theoretical framework for the proposition that simulation mechanisms involved in empathizing with others also underlie intertemporal choices.This framework yields a testable psychological account of temporal discounting based on simulation.Such an account, if experimentally validated, could have important implications for how simulation mechanisms are investigated, and makes predictions about special populations characterized by putative deficits in simulating others.

View Article: PubMed Central - PubMed

Affiliation: Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading Reading, UK.

ABSTRACT
One route to understanding the thoughts and feelings of others is by mentally putting one's self in their shoes and seeing the world from their perspective, i.e., by simulation. Simulation is potentially used not only for inferring how others feel, but also for predicting how we ourselves will feel in the future. For instance, one might judge the worth of a future reward by simulating how much it will eventually be enjoyed. In intertemporal choices between smaller immediate and larger delayed rewards, it is observed that as the length of delay increases, delayed rewards lose subjective value; a phenomenon known as temporal discounting. In this article, we develop a theoretical framework for the proposition that simulation mechanisms involved in empathizing with others also underlie intertemporal choices. This framework yields a testable psychological account of temporal discounting based on simulation. Such an account, if experimentally validated, could have important implications for how simulation mechanisms are investigated, and makes predictions about special populations characterized by putative deficits in simulating others.

No MeSH data available.


Related in: MedlinePlus

Visualisation of simulation components. Top panel: as SA increases, the other's inferred perspective moves from an inaccurate neutral state (caused by egocentric bias to one's own neutral state) toward their actual pain state. Bottom panel: as SE increases, the other's predicted perspective becomes simulated in one's self, leading to increased state-sharing between self and other (illustrations by Allie Brosh (hyperboleandahalf.blogspot.com/), published with permission of partial reprint from artist).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4379903&req=5

Figure 1: Visualisation of simulation components. Top panel: as SA increases, the other's inferred perspective moves from an inaccurate neutral state (caused by egocentric bias to one's own neutral state) toward their actual pain state. Bottom panel: as SE increases, the other's predicted perspective becomes simulated in one's self, leading to increased state-sharing between self and other (illustrations by Allie Brosh (hyperboleandahalf.blogspot.com/), published with permission of partial reprint from artist).

Mentions: Simulation is a theoretical mechanism for how the thoughts and feelings of others are inferred, as in Theory-of-Mind (ToM) tasks (Shanton and Goldman, 2010). It states that to understand others, we put ourselves in their shoes to see the world from their perspective. There are two component processes involved in simulation. In one component, one's own perspective/belief state needs to be adjusted to match the perspective of the other person. A key prediction of simulation accounts is that if one's own perspective is not sufficiently adjusted, this will bias predictions about the perspectives of others toward one's own, an error known as egocentric bias. This component of simulation involving suppression of the egocentric bias will hereafter be referred to as simulation accuracy (SA) which might involve multiple processes, such as executive function, inhibitory control, and working-memory. The other component of simulation describes the extent to which the thoughts and feelings of others are actively embodied in one's self, and is hereafter referred to as simulation efficacy (SE). In this sense, SE is conceptually similar to emotional contagion (Hatfield et al., 1994). SA and SE can be engaged to different extents in the same social cognitive task, depending on task demands. A graphical depiction of these components during simulation is provided in Figure 1. A challenge for lab-based tests is to identify proxy processes for each of these components of simulation.


The role of simulation in intertemporal choices.

O'Connell G, Christakou A, Chakrabarti B - Front Neurosci (2015)

Visualisation of simulation components. Top panel: as SA increases, the other's inferred perspective moves from an inaccurate neutral state (caused by egocentric bias to one's own neutral state) toward their actual pain state. Bottom panel: as SE increases, the other's predicted perspective becomes simulated in one's self, leading to increased state-sharing between self and other (illustrations by Allie Brosh (hyperboleandahalf.blogspot.com/), published with permission of partial reprint from artist).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4379903&req=5

Figure 1: Visualisation of simulation components. Top panel: as SA increases, the other's inferred perspective moves from an inaccurate neutral state (caused by egocentric bias to one's own neutral state) toward their actual pain state. Bottom panel: as SE increases, the other's predicted perspective becomes simulated in one's self, leading to increased state-sharing between self and other (illustrations by Allie Brosh (hyperboleandahalf.blogspot.com/), published with permission of partial reprint from artist).
Mentions: Simulation is a theoretical mechanism for how the thoughts and feelings of others are inferred, as in Theory-of-Mind (ToM) tasks (Shanton and Goldman, 2010). It states that to understand others, we put ourselves in their shoes to see the world from their perspective. There are two component processes involved in simulation. In one component, one's own perspective/belief state needs to be adjusted to match the perspective of the other person. A key prediction of simulation accounts is that if one's own perspective is not sufficiently adjusted, this will bias predictions about the perspectives of others toward one's own, an error known as egocentric bias. This component of simulation involving suppression of the egocentric bias will hereafter be referred to as simulation accuracy (SA) which might involve multiple processes, such as executive function, inhibitory control, and working-memory. The other component of simulation describes the extent to which the thoughts and feelings of others are actively embodied in one's self, and is hereafter referred to as simulation efficacy (SE). In this sense, SE is conceptually similar to emotional contagion (Hatfield et al., 1994). SA and SE can be engaged to different extents in the same social cognitive task, depending on task demands. A graphical depiction of these components during simulation is provided in Figure 1. A challenge for lab-based tests is to identify proxy processes for each of these components of simulation.

Bottom Line: In this article, we develop a theoretical framework for the proposition that simulation mechanisms involved in empathizing with others also underlie intertemporal choices.This framework yields a testable psychological account of temporal discounting based on simulation.Such an account, if experimentally validated, could have important implications for how simulation mechanisms are investigated, and makes predictions about special populations characterized by putative deficits in simulating others.

View Article: PubMed Central - PubMed

Affiliation: Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading Reading, UK.

ABSTRACT
One route to understanding the thoughts and feelings of others is by mentally putting one's self in their shoes and seeing the world from their perspective, i.e., by simulation. Simulation is potentially used not only for inferring how others feel, but also for predicting how we ourselves will feel in the future. For instance, one might judge the worth of a future reward by simulating how much it will eventually be enjoyed. In intertemporal choices between smaller immediate and larger delayed rewards, it is observed that as the length of delay increases, delayed rewards lose subjective value; a phenomenon known as temporal discounting. In this article, we develop a theoretical framework for the proposition that simulation mechanisms involved in empathizing with others also underlie intertemporal choices. This framework yields a testable psychological account of temporal discounting based on simulation. Such an account, if experimentally validated, could have important implications for how simulation mechanisms are investigated, and makes predictions about special populations characterized by putative deficits in simulating others.

No MeSH data available.


Related in: MedlinePlus