Limits...
In vitro evaluation of six chemical agents on smooth Brucella melitensis strain.

Wang Z, Bie P, Cheng J, Wu Q, Lu L - Ann. Clin. Microbiol. Antimicrob. (2015)

Bottom Line: The results of quantitative determination showed that the bactericidal effects of the disinfectants were influenced by their concentration, exposure time, dirty condition and the temperature.Under dirty conditions and a low temperatures, sodium hypochlorite and sodium hydroxide showed better bactericidal effect, while benzalkonium chloride was almost without bactericidal ability.However, the bactericidal effect is vulnerable to dirty conditions and low temperatures.

View Article: PubMed Central - PubMed

ABSTRACT
Brucellosis is a zoonosis that disseminated by a variety of ways between animals and humans. The effective disinfection of contaminated environments, soil, feces, and animal bodies plays an irreplaceable role in the prevention and control of brucellosis. To kill Brucella effectively, the bactericidal effects of frequently used disinfectants (including aldehydes, halogens, quaternary ammonium compound, phenolics, and alkalines) and the potential factors that influence disinfection effects were determined in the present study. The results revealed that the minimum bactericidal concentrations (MBCs) of the six disinfectants were all significantly lower than the routinely used concentrations, and all the tested disinfectants were effective against B. melitensis NI. The results of quantitative determination showed that the bactericidal effects of the disinfectants were influenced by their concentration, exposure time, dirty condition and the temperature. Under dirty conditions and a low temperatures, sodium hypochlorite and sodium hydroxide showed better bactericidal effect, while benzalkonium chloride was almost without bactericidal ability. In addition, increasing the disinfectant concentration at low temperatures can improve the bactericidal effect. The present study suggested that Brucella is sensitive to commonly used disinfectants. However, the bactericidal effect is vulnerable to dirty conditions and low temperatures. Thus, it is necessary to test the in vitro sensitivity of disinfectants that are commonly used on farms or the new disinfectant formulations periodically, with the aim of improving the efficacy of animal and human brucellosis prevention programs.

Show MeSH

Related in: MedlinePlus

The quantitative bactericidal effects of each disinfectant under different conditions at room temperature. Reduction factors: The mean and SD of the Log10 cfu (negative control)-Log10 cfu (disinfection group). *P < 0.05 (significant) in comparison with the value for the physiological saline group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4376339&req=5

Fig1: The quantitative bactericidal effects of each disinfectant under different conditions at room temperature. Reduction factors: The mean and SD of the Log10 cfu (negative control)-Log10 cfu (disinfection group). *P < 0.05 (significant) in comparison with the value for the physiological saline group.

Mentions: The bactericidal effect of six chemical disinfectants under different conditions was determined. As shown in Figure 1, we observed that the reduction factors (RF) of glutaraldehyde, trichloroisocyanuric acid, benzalkonium chloride, and lysol in the feces suspension were significantly lower than that in physiological saline (P < 0.05). In the soil suspension, the RFs of these disinfectants increased with respect to that of the feces, but benzalkonium chloride still had the lowest RFs at 1.33 ± 0.23, 1.60 ± 0.08, and 2.46 ± 0.20 within 1, 5, and 10 min, respectively. Among the six disinfectants, sodium hypochlorite and sodium hydroxide were the most effective under all three conditions, with RFs of 8.47 ± 0.11 and 8.56 ± 0.21 for 10 min, respectively. In addition, the reaction time can also influence the bactericidal effects. For example, the RFs of glutaraldehyde in physiological saline were 2.61 ± 0.07, 4.89 ± 0.02, and 8.90 ± 0.14 after 1, 5, and 10 min, respectively.Figure 1


In vitro evaluation of six chemical agents on smooth Brucella melitensis strain.

Wang Z, Bie P, Cheng J, Wu Q, Lu L - Ann. Clin. Microbiol. Antimicrob. (2015)

The quantitative bactericidal effects of each disinfectant under different conditions at room temperature. Reduction factors: The mean and SD of the Log10 cfu (negative control)-Log10 cfu (disinfection group). *P < 0.05 (significant) in comparison with the value for the physiological saline group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4376339&req=5

Fig1: The quantitative bactericidal effects of each disinfectant under different conditions at room temperature. Reduction factors: The mean and SD of the Log10 cfu (negative control)-Log10 cfu (disinfection group). *P < 0.05 (significant) in comparison with the value for the physiological saline group.
Mentions: The bactericidal effect of six chemical disinfectants under different conditions was determined. As shown in Figure 1, we observed that the reduction factors (RF) of glutaraldehyde, trichloroisocyanuric acid, benzalkonium chloride, and lysol in the feces suspension were significantly lower than that in physiological saline (P < 0.05). In the soil suspension, the RFs of these disinfectants increased with respect to that of the feces, but benzalkonium chloride still had the lowest RFs at 1.33 ± 0.23, 1.60 ± 0.08, and 2.46 ± 0.20 within 1, 5, and 10 min, respectively. Among the six disinfectants, sodium hypochlorite and sodium hydroxide were the most effective under all three conditions, with RFs of 8.47 ± 0.11 and 8.56 ± 0.21 for 10 min, respectively. In addition, the reaction time can also influence the bactericidal effects. For example, the RFs of glutaraldehyde in physiological saline were 2.61 ± 0.07, 4.89 ± 0.02, and 8.90 ± 0.14 after 1, 5, and 10 min, respectively.Figure 1

Bottom Line: The results of quantitative determination showed that the bactericidal effects of the disinfectants were influenced by their concentration, exposure time, dirty condition and the temperature.Under dirty conditions and a low temperatures, sodium hypochlorite and sodium hydroxide showed better bactericidal effect, while benzalkonium chloride was almost without bactericidal ability.However, the bactericidal effect is vulnerable to dirty conditions and low temperatures.

View Article: PubMed Central - PubMed

ABSTRACT
Brucellosis is a zoonosis that disseminated by a variety of ways between animals and humans. The effective disinfection of contaminated environments, soil, feces, and animal bodies plays an irreplaceable role in the prevention and control of brucellosis. To kill Brucella effectively, the bactericidal effects of frequently used disinfectants (including aldehydes, halogens, quaternary ammonium compound, phenolics, and alkalines) and the potential factors that influence disinfection effects were determined in the present study. The results revealed that the minimum bactericidal concentrations (MBCs) of the six disinfectants were all significantly lower than the routinely used concentrations, and all the tested disinfectants were effective against B. melitensis NI. The results of quantitative determination showed that the bactericidal effects of the disinfectants were influenced by their concentration, exposure time, dirty condition and the temperature. Under dirty conditions and a low temperatures, sodium hypochlorite and sodium hydroxide showed better bactericidal effect, while benzalkonium chloride was almost without bactericidal ability. In addition, increasing the disinfectant concentration at low temperatures can improve the bactericidal effect. The present study suggested that Brucella is sensitive to commonly used disinfectants. However, the bactericidal effect is vulnerable to dirty conditions and low temperatures. Thus, it is necessary to test the in vitro sensitivity of disinfectants that are commonly used on farms or the new disinfectant formulations periodically, with the aim of improving the efficacy of animal and human brucellosis prevention programs.

Show MeSH
Related in: MedlinePlus