Limits...
Resuscitation with hydroxyethyl starch 130/0.4 attenuates intestinal injury in a rabbit model of sepsis.

Lu WH, Jin XJ, Jiang XG, Wang Z, Wu JY, Shen GG - Indian J Pharmacol (2015 Jan-Feb)

Bottom Line: The mechanisms that underlie the protective effects of colloids on the intestinal mucosal barrier are unclear.Arterial and superior mesenteric vein blood samples were collected 4 and 8 h after the CASP procedure for blood gas analysis and measuring tumor necrosis factor-α, interleukin-10, and D-lactate levels.Fluid resuscitation with 6% HES 130/0.4 alleviated pathological changes in the abdominal cavity, improved blood gas parameters and inflammatory mediator levels, decreased plasma D-lactate levels, and reduced intestinal mucosal injury compared with the non-treated sepsis model.

View Article: PubMed Central - PubMed

Affiliation: Department of Anesthesiology and Critical Care Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, China.

ABSTRACT

Objective: Improvement of mucosal barrier function and reduction of bacterial translocation are important in the management of sepsis. The mechanisms that underlie the protective effects of colloids on the intestinal mucosal barrier are unclear. The study aims to investigate the effect of fluid resuscitation with hydroxyethyl starch (HES) 130/0.4 against intestinal mucosal barrier dysfunction in a rabbit model of sepsis.

Materials and methods: Thirty healthy rabbits were randomly and equally divided into a sham-operated control, a sepsis model, or a sepsis + HES treatment group. The sepsis model and sepsis + HES treatment groups were subjected to a modified colon ascendens stent peritonitis (CASP) procedure to induce sepsis. Four hours after the CASP procedure, fluid resuscitation was performed with 6% HES 130/0.4. Arterial and superior mesenteric vein blood samples were collected 4 and 8 h after the CASP procedure for blood gas analysis and measuring tumor necrosis factor-α, interleukin-10, and D-lactate levels. The rabbits were euthanized 8 h after CASP, and sections of the small intestine were stained to evaluate histopathological changes.

Results: Respiratory rate and blood pressure were stable during the resuscitation period. Fluid resuscitation with 6% HES 130/0.4 alleviated pathological changes in the abdominal cavity, improved blood gas parameters and inflammatory mediator levels, decreased plasma D-lactate levels, and reduced intestinal mucosal injury compared with the non-treated sepsis model.

Conclusions: Fluid resuscitation with 6% HES 130/0.4 protects against intestinal mucosal barrier dysfunction in rabbits with sepsis, possibly via mechanisms associated with improving intestinal oxygen metabolism and reducing the release of inflammatory mediators.

Show MeSH

Related in: MedlinePlus

Histopathological changes in the small intestinal mucosa of rats of different groups 8 h after induction of sepsis. (a) sepsis model; (b) sepsis + HES treatment; C, sham-operated control (H and E, ×100 staining)
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4375819&req=5

Figure 3: Histopathological changes in the small intestinal mucosa of rats of different groups 8 h after induction of sepsis. (a) sepsis model; (b) sepsis + HES treatment; C, sham-operated control (H and E, ×100 staining)

Mentions: In the sepsis model group, histopathology revealed obvious atrophy of the intestinal mucosa, shedding of villi, degeneration, necrosis, and shedding of epithelial cells. Exposure, edema, and lymphocyte and neutrophil infiltration of the lamina propria were also evident, and lymphocyte and neutrophil infiltration, submucosal capillary congestion, and purulent mossy exudate on the serosal surface were visible [Figure 3a]. Compared to the sepsis model group, the sepsis + HES treatment group showed mild atrophy of the intestinal mucosa, regularly arranged villi, grossly intact epithelium, increased number of goblet cells, cystic space below the upper villous epithelium, and mild edema and lymphocyte infiltration of the lamina propria [Figure 3b]. The sham-operated control group had intestinal mucosa that was of an even thickness, regularly arranged villi, intact epithelium, and mild lymphocyte infiltration of the lamina propria [Figure 3c].


Resuscitation with hydroxyethyl starch 130/0.4 attenuates intestinal injury in a rabbit model of sepsis.

Lu WH, Jin XJ, Jiang XG, Wang Z, Wu JY, Shen GG - Indian J Pharmacol (2015 Jan-Feb)

Histopathological changes in the small intestinal mucosa of rats of different groups 8 h after induction of sepsis. (a) sepsis model; (b) sepsis + HES treatment; C, sham-operated control (H and E, ×100 staining)
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4375819&req=5

Figure 3: Histopathological changes in the small intestinal mucosa of rats of different groups 8 h after induction of sepsis. (a) sepsis model; (b) sepsis + HES treatment; C, sham-operated control (H and E, ×100 staining)
Mentions: In the sepsis model group, histopathology revealed obvious atrophy of the intestinal mucosa, shedding of villi, degeneration, necrosis, and shedding of epithelial cells. Exposure, edema, and lymphocyte and neutrophil infiltration of the lamina propria were also evident, and lymphocyte and neutrophil infiltration, submucosal capillary congestion, and purulent mossy exudate on the serosal surface were visible [Figure 3a]. Compared to the sepsis model group, the sepsis + HES treatment group showed mild atrophy of the intestinal mucosa, regularly arranged villi, grossly intact epithelium, increased number of goblet cells, cystic space below the upper villous epithelium, and mild edema and lymphocyte infiltration of the lamina propria [Figure 3b]. The sham-operated control group had intestinal mucosa that was of an even thickness, regularly arranged villi, intact epithelium, and mild lymphocyte infiltration of the lamina propria [Figure 3c].

Bottom Line: The mechanisms that underlie the protective effects of colloids on the intestinal mucosal barrier are unclear.Arterial and superior mesenteric vein blood samples were collected 4 and 8 h after the CASP procedure for blood gas analysis and measuring tumor necrosis factor-α, interleukin-10, and D-lactate levels.Fluid resuscitation with 6% HES 130/0.4 alleviated pathological changes in the abdominal cavity, improved blood gas parameters and inflammatory mediator levels, decreased plasma D-lactate levels, and reduced intestinal mucosal injury compared with the non-treated sepsis model.

View Article: PubMed Central - PubMed

Affiliation: Department of Anesthesiology and Critical Care Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, China.

ABSTRACT

Objective: Improvement of mucosal barrier function and reduction of bacterial translocation are important in the management of sepsis. The mechanisms that underlie the protective effects of colloids on the intestinal mucosal barrier are unclear. The study aims to investigate the effect of fluid resuscitation with hydroxyethyl starch (HES) 130/0.4 against intestinal mucosal barrier dysfunction in a rabbit model of sepsis.

Materials and methods: Thirty healthy rabbits were randomly and equally divided into a sham-operated control, a sepsis model, or a sepsis + HES treatment group. The sepsis model and sepsis + HES treatment groups were subjected to a modified colon ascendens stent peritonitis (CASP) procedure to induce sepsis. Four hours after the CASP procedure, fluid resuscitation was performed with 6% HES 130/0.4. Arterial and superior mesenteric vein blood samples were collected 4 and 8 h after the CASP procedure for blood gas analysis and measuring tumor necrosis factor-α, interleukin-10, and D-lactate levels. The rabbits were euthanized 8 h after CASP, and sections of the small intestine were stained to evaluate histopathological changes.

Results: Respiratory rate and blood pressure were stable during the resuscitation period. Fluid resuscitation with 6% HES 130/0.4 alleviated pathological changes in the abdominal cavity, improved blood gas parameters and inflammatory mediator levels, decreased plasma D-lactate levels, and reduced intestinal mucosal injury compared with the non-treated sepsis model.

Conclusions: Fluid resuscitation with 6% HES 130/0.4 protects against intestinal mucosal barrier dysfunction in rabbits with sepsis, possibly via mechanisms associated with improving intestinal oxygen metabolism and reducing the release of inflammatory mediators.

Show MeSH
Related in: MedlinePlus