Limits...
Structure elucidation of chlorophyll catabolites (phyllobilins) by ESI-mass spectrometry-Pseudo-molecular ions and fragmentation analysis of a nonfluorescent chlorophyll catabolite (NCC).

Müller T, Vergeiner S, Kräutler B - Int J Mass Spectrom (2014)

Bottom Line: A recent application of this methodology concerned the investigation of the annually occurring degradation of green plant pigments.Since the first structural elucidation of a breakdown product in the early 1990s, a number of similarly structured, tetrapyrrolic catabolites have been discovered with the help of chromatographic, spectroscopic and spectrometric methods.Still, a thorough investigation of the common fragmentation behavior of these ubiquitous, naturally occurring chlorophyll breakdown products is lacking.

View Article: PubMed Central - PubMed

Affiliation: Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria.

ABSTRACT

The hyphenation of high performance chromatography with modern mass spectrometric techniques providing high-resolution data as well as structural information from MS/MS experiments has become a versatile tool for rapid natural product identification and characterization. A recent application of this methodology concerned the investigation of the annually occurring degradation of green plant pigments. Since the first structural elucidation of a breakdown product in the early 1990s, a number of similarly structured, tetrapyrrolic catabolites have been discovered with the help of chromatographic, spectroscopic and spectrometric methods. A prerequisite for a satisfactory, manually operated or database supported analysis of mass spectrometric fragmentation patterns is a deeper knowledge of the underlying gas phase chemistry. Still, a thorough investigation of the common fragmentation behavior of these ubiquitous, naturally occurring chlorophyll breakdown products is lacking. This study closes the gap and gives a comprehensive overview of collision-induced fragmentation reactions of a tetrapyrrolic nonfluorescent chlorophyll catabolite, which is intended to serve as a model compound for the substance class of phyllobilins.

No MeSH data available.


Related in: MedlinePlus

© Copyright Policy - CC BY-NC-ND
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4375672&req=5


Structure elucidation of chlorophyll catabolites (phyllobilins) by ESI-mass spectrometry-Pseudo-molecular ions and fragmentation analysis of a nonfluorescent chlorophyll catabolite (NCC).

Müller T, Vergeiner S, Kräutler B - Int J Mass Spectrom (2014)

© Copyright Policy - CC BY-NC-ND
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4375672&req=5

Bottom Line: A recent application of this methodology concerned the investigation of the annually occurring degradation of green plant pigments.Since the first structural elucidation of a breakdown product in the early 1990s, a number of similarly structured, tetrapyrrolic catabolites have been discovered with the help of chromatographic, spectroscopic and spectrometric methods.Still, a thorough investigation of the common fragmentation behavior of these ubiquitous, naturally occurring chlorophyll breakdown products is lacking.

View Article: PubMed Central - PubMed

Affiliation: Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria.

ABSTRACT

The hyphenation of high performance chromatography with modern mass spectrometric techniques providing high-resolution data as well as structural information from MS/MS experiments has become a versatile tool for rapid natural product identification and characterization. A recent application of this methodology concerned the investigation of the annually occurring degradation of green plant pigments. Since the first structural elucidation of a breakdown product in the early 1990s, a number of similarly structured, tetrapyrrolic catabolites have been discovered with the help of chromatographic, spectroscopic and spectrometric methods. A prerequisite for a satisfactory, manually operated or database supported analysis of mass spectrometric fragmentation patterns is a deeper knowledge of the underlying gas phase chemistry. Still, a thorough investigation of the common fragmentation behavior of these ubiquitous, naturally occurring chlorophyll breakdown products is lacking. This study closes the gap and gives a comprehensive overview of collision-induced fragmentation reactions of a tetrapyrrolic nonfluorescent chlorophyll catabolite, which is intended to serve as a model compound for the substance class of phyllobilins.

No MeSH data available.


Related in: MedlinePlus