Limits...
Shaping pseudoneglect with transcranial cerebellar direct current stimulation and music listening.

Picazio S, Granata C, Caltagirone C, Petrosini L, Oliveri M - Front Hum Neurosci (2015)

Bottom Line: We applied this new state-dependency approach to investigate the cerebellar role in musical and spatial information processing, given that a link between musical perception and visuo-spatial abilities and a clear cerebellar involvement in music perception and visuo-spatial tasks have been reported.Conversely, the anodal or sham pre-conditioning stimulations combined with either music and white noise conditioning listening did not modulate spatial attention.They propose that tcDCS in combination with music listening could act as a rehabilitative tool to improve cognitive functions in the presence of neglect or other spatial disorders.

View Article: PubMed Central - PubMed

Affiliation: Clinical and Behavioral Neurology Laboratory, Non-Invasive Brain Stimulation Unit, IRCCS "Santa Lucia" Foundation Rome, Italy ; Department of Psychology, "Sapienza" University of Rome Rome, Italy.

ABSTRACT
Non-invasive brain stimulation modulates cortical excitability depending on the initial activation state of the structure being stimulated. Combination of cognitive with neurophysiological stimulations has been successfully employed to modulate responses of specific brain regions. The present research combined a neurophysiological pre-conditioning with a cognitive conditioning stimulation to modulate behavior. We applied this new state-dependency approach to investigate the cerebellar role in musical and spatial information processing, given that a link between musical perception and visuo-spatial abilities and a clear cerebellar involvement in music perception and visuo-spatial tasks have been reported. Cathodal, anodal or sham transcranial cerebellar Direct Current Stimulation (tcDCS) pre-conditioning was applied on the left cerebellar hemisphere followed by conditioning stimulation through music or white noise listening in a sample of healthy subjects performing a Line Bisection Task (LBT). The combination of the cathodal stimulation with music listening resulted in a marked attentional shift toward the right hemispace, compensating thus the natural leftward bias of the baseline condition (pseudoneglect). Conversely, the anodal or sham pre-conditioning stimulations combined with either music and white noise conditioning listening did not modulate spatial attention. The efficacy of the combined stimulation (cathodal pre-conditioning and music conditioning) and the absence of any effect of the single stimulations provide a strong support to the state-dependency theory. They propose that tcDCS in combination with music listening could act as a rehabilitative tool to improve cognitive functions in the presence of neglect or other spatial disorders.

No MeSH data available.


Related in: MedlinePlus

LBT stimuli. Line 1 (exactly bisected): left segment 75 mm; right segment 75 mm. Line 2 (left-elongated): left segment 75 mm; right segment 70 mm. Line 3 (left-elongated): left segment 80 mm; right segment 75 mm. Line 4 (right-elongated): left segment 70 mm; right segment 75 mm. Line 5 (right-elongated): left segment 75 mm; right segment 80 mm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4374462&req=5

Figure 2: LBT stimuli. Line 1 (exactly bisected): left segment 75 mm; right segment 75 mm. Line 2 (left-elongated): left segment 75 mm; right segment 70 mm. Line 3 (left-elongated): left segment 80 mm; right segment 75 mm. Line 4 (right-elongated): left segment 70 mm; right segment 75 mm. Line 5 (right-elongated): left segment 75 mm; right segment 80 mm.

Mentions: The present task was a modified version based on the protocol of another study published by Fierro et al. (2001). Participants were tested in a quiet room of our lab. They sat comfortably on an armchair at a distance of about 100 cm from a computer monitor; the center of the monitor was aligned with the subject’s eyes. A computerized version of LBT was used. Stimuli consisted of a single black 1 mm thick horizontal line transected by a 1 mm thick and 10 mm high vertical bar (transector), presented on a white background with the transector exactly coincident with the center of the screen. The stimuli differed in the overall line length and in the position of the transector (exactly at midpoint, displaced of 5 mm rightward or leftward) determining slightly different lengths of the right and left segments of the line (Figure 2). Stimuli were tachistoscopically presented (50 ms duration) to prevent eye scanning. Before stimulus presentation, the subject was required to fixate for 250 ms a circular central target on the blank screen that disappeared as soon as the visual stimulus was presented. After presentation of each stimulus, the subject was required to indicate the longer line segment, making a forced-choice decision with three response possibilities (equal segments, longer to the right, or longer to the left). Responses were made by pressing with the right index finger the central, the right or the left key of a three key-button box to indicate respectively that the two segments were of equal length, that the right segment was longer, that the left segment was longer. Each LBT block involved 60 randomized trials including 20 repetitions of exactly bisected lines (Line 1), and 10 repetitions of right- or left-elongated lines (Lines 2–5, see Figure 2). Participants were encouraged to complete the whole LBT task and to respond even when doubtful.


Shaping pseudoneglect with transcranial cerebellar direct current stimulation and music listening.

Picazio S, Granata C, Caltagirone C, Petrosini L, Oliveri M - Front Hum Neurosci (2015)

LBT stimuli. Line 1 (exactly bisected): left segment 75 mm; right segment 75 mm. Line 2 (left-elongated): left segment 75 mm; right segment 70 mm. Line 3 (left-elongated): left segment 80 mm; right segment 75 mm. Line 4 (right-elongated): left segment 70 mm; right segment 75 mm. Line 5 (right-elongated): left segment 75 mm; right segment 80 mm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4374462&req=5

Figure 2: LBT stimuli. Line 1 (exactly bisected): left segment 75 mm; right segment 75 mm. Line 2 (left-elongated): left segment 75 mm; right segment 70 mm. Line 3 (left-elongated): left segment 80 mm; right segment 75 mm. Line 4 (right-elongated): left segment 70 mm; right segment 75 mm. Line 5 (right-elongated): left segment 75 mm; right segment 80 mm.
Mentions: The present task was a modified version based on the protocol of another study published by Fierro et al. (2001). Participants were tested in a quiet room of our lab. They sat comfortably on an armchair at a distance of about 100 cm from a computer monitor; the center of the monitor was aligned with the subject’s eyes. A computerized version of LBT was used. Stimuli consisted of a single black 1 mm thick horizontal line transected by a 1 mm thick and 10 mm high vertical bar (transector), presented on a white background with the transector exactly coincident with the center of the screen. The stimuli differed in the overall line length and in the position of the transector (exactly at midpoint, displaced of 5 mm rightward or leftward) determining slightly different lengths of the right and left segments of the line (Figure 2). Stimuli were tachistoscopically presented (50 ms duration) to prevent eye scanning. Before stimulus presentation, the subject was required to fixate for 250 ms a circular central target on the blank screen that disappeared as soon as the visual stimulus was presented. After presentation of each stimulus, the subject was required to indicate the longer line segment, making a forced-choice decision with three response possibilities (equal segments, longer to the right, or longer to the left). Responses were made by pressing with the right index finger the central, the right or the left key of a three key-button box to indicate respectively that the two segments were of equal length, that the right segment was longer, that the left segment was longer. Each LBT block involved 60 randomized trials including 20 repetitions of exactly bisected lines (Line 1), and 10 repetitions of right- or left-elongated lines (Lines 2–5, see Figure 2). Participants were encouraged to complete the whole LBT task and to respond even when doubtful.

Bottom Line: We applied this new state-dependency approach to investigate the cerebellar role in musical and spatial information processing, given that a link between musical perception and visuo-spatial abilities and a clear cerebellar involvement in music perception and visuo-spatial tasks have been reported.Conversely, the anodal or sham pre-conditioning stimulations combined with either music and white noise conditioning listening did not modulate spatial attention.They propose that tcDCS in combination with music listening could act as a rehabilitative tool to improve cognitive functions in the presence of neglect or other spatial disorders.

View Article: PubMed Central - PubMed

Affiliation: Clinical and Behavioral Neurology Laboratory, Non-Invasive Brain Stimulation Unit, IRCCS "Santa Lucia" Foundation Rome, Italy ; Department of Psychology, "Sapienza" University of Rome Rome, Italy.

ABSTRACT
Non-invasive brain stimulation modulates cortical excitability depending on the initial activation state of the structure being stimulated. Combination of cognitive with neurophysiological stimulations has been successfully employed to modulate responses of specific brain regions. The present research combined a neurophysiological pre-conditioning with a cognitive conditioning stimulation to modulate behavior. We applied this new state-dependency approach to investigate the cerebellar role in musical and spatial information processing, given that a link between musical perception and visuo-spatial abilities and a clear cerebellar involvement in music perception and visuo-spatial tasks have been reported. Cathodal, anodal or sham transcranial cerebellar Direct Current Stimulation (tcDCS) pre-conditioning was applied on the left cerebellar hemisphere followed by conditioning stimulation through music or white noise listening in a sample of healthy subjects performing a Line Bisection Task (LBT). The combination of the cathodal stimulation with music listening resulted in a marked attentional shift toward the right hemispace, compensating thus the natural leftward bias of the baseline condition (pseudoneglect). Conversely, the anodal or sham pre-conditioning stimulations combined with either music and white noise conditioning listening did not modulate spatial attention. The efficacy of the combined stimulation (cathodal pre-conditioning and music conditioning) and the absence of any effect of the single stimulations provide a strong support to the state-dependency theory. They propose that tcDCS in combination with music listening could act as a rehabilitative tool to improve cognitive functions in the presence of neglect or other spatial disorders.

No MeSH data available.


Related in: MedlinePlus