Limits...
Shaping pseudoneglect with transcranial cerebellar direct current stimulation and music listening.

Picazio S, Granata C, Caltagirone C, Petrosini L, Oliveri M - Front Hum Neurosci (2015)

Bottom Line: We applied this new state-dependency approach to investigate the cerebellar role in musical and spatial information processing, given that a link between musical perception and visuo-spatial abilities and a clear cerebellar involvement in music perception and visuo-spatial tasks have been reported.Conversely, the anodal or sham pre-conditioning stimulations combined with either music and white noise conditioning listening did not modulate spatial attention.They propose that tcDCS in combination with music listening could act as a rehabilitative tool to improve cognitive functions in the presence of neglect or other spatial disorders.

View Article: PubMed Central - PubMed

Affiliation: Clinical and Behavioral Neurology Laboratory, Non-Invasive Brain Stimulation Unit, IRCCS "Santa Lucia" Foundation Rome, Italy ; Department of Psychology, "Sapienza" University of Rome Rome, Italy.

ABSTRACT
Non-invasive brain stimulation modulates cortical excitability depending on the initial activation state of the structure being stimulated. Combination of cognitive with neurophysiological stimulations has been successfully employed to modulate responses of specific brain regions. The present research combined a neurophysiological pre-conditioning with a cognitive conditioning stimulation to modulate behavior. We applied this new state-dependency approach to investigate the cerebellar role in musical and spatial information processing, given that a link between musical perception and visuo-spatial abilities and a clear cerebellar involvement in music perception and visuo-spatial tasks have been reported. Cathodal, anodal or sham transcranial cerebellar Direct Current Stimulation (tcDCS) pre-conditioning was applied on the left cerebellar hemisphere followed by conditioning stimulation through music or white noise listening in a sample of healthy subjects performing a Line Bisection Task (LBT). The combination of the cathodal stimulation with music listening resulted in a marked attentional shift toward the right hemispace, compensating thus the natural leftward bias of the baseline condition (pseudoneglect). Conversely, the anodal or sham pre-conditioning stimulations combined with either music and white noise conditioning listening did not modulate spatial attention. The efficacy of the combined stimulation (cathodal pre-conditioning and music conditioning) and the absence of any effect of the single stimulations provide a strong support to the state-dependency theory. They propose that tcDCS in combination with music listening could act as a rehabilitative tool to improve cognitive functions in the presence of neglect or other spatial disorders.

No MeSH data available.


Related in: MedlinePlus

A model of cerebellar involvement in visuo-spatial lateralized attention. Left cerebellar hemisphere works in network with the right cerebral hemisphere for directing the attention toward the left visual hemifield. Right cerebellar hemisphere works in network with the left cerebral hemisphere for directing the attention toward the right visual hemifield. The attentional vector for the left visual hemifield (thick dashed line) is naturally stronger than the one for the right visual hemifield (thin dashed line).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4374462&req=5

Figure 1: A model of cerebellar involvement in visuo-spatial lateralized attention. Left cerebellar hemisphere works in network with the right cerebral hemisphere for directing the attention toward the left visual hemifield. Right cerebellar hemisphere works in network with the left cerebral hemisphere for directing the attention toward the right visual hemifield. The attentional vector for the left visual hemifield (thick dashed line) is naturally stronger than the one for the right visual hemifield (thin dashed line).

Mentions: In the present study for the first time tDCS was applied over a cerebellar site to modify pseudoneglect. The involvement of the left cerebellar hemisphere in visuo-spatial attention and in LBT has been consistently described in neuroimaging (Fink et al., 2000), brain stimulation (Oliver et al., 2011) and neuropsychological (Daini et al., 2008) studies. According to the model of crossed cerebello-cortical interactions, the cerebellar hemispheres and contralateral cortical regions are interconnected via thalamus (Clower et al., 2001; Middleton and Strick, 2001; Dum and Strick, 2003). As represented in Figure 1, left cerebellar hemisphere and right parietal lobe work together for directing the attention toward the left visual hemifield with greater strength than the contralateral attentional vector.


Shaping pseudoneglect with transcranial cerebellar direct current stimulation and music listening.

Picazio S, Granata C, Caltagirone C, Petrosini L, Oliveri M - Front Hum Neurosci (2015)

A model of cerebellar involvement in visuo-spatial lateralized attention. Left cerebellar hemisphere works in network with the right cerebral hemisphere for directing the attention toward the left visual hemifield. Right cerebellar hemisphere works in network with the left cerebral hemisphere for directing the attention toward the right visual hemifield. The attentional vector for the left visual hemifield (thick dashed line) is naturally stronger than the one for the right visual hemifield (thin dashed line).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4374462&req=5

Figure 1: A model of cerebellar involvement in visuo-spatial lateralized attention. Left cerebellar hemisphere works in network with the right cerebral hemisphere for directing the attention toward the left visual hemifield. Right cerebellar hemisphere works in network with the left cerebral hemisphere for directing the attention toward the right visual hemifield. The attentional vector for the left visual hemifield (thick dashed line) is naturally stronger than the one for the right visual hemifield (thin dashed line).
Mentions: In the present study for the first time tDCS was applied over a cerebellar site to modify pseudoneglect. The involvement of the left cerebellar hemisphere in visuo-spatial attention and in LBT has been consistently described in neuroimaging (Fink et al., 2000), brain stimulation (Oliver et al., 2011) and neuropsychological (Daini et al., 2008) studies. According to the model of crossed cerebello-cortical interactions, the cerebellar hemispheres and contralateral cortical regions are interconnected via thalamus (Clower et al., 2001; Middleton and Strick, 2001; Dum and Strick, 2003). As represented in Figure 1, left cerebellar hemisphere and right parietal lobe work together for directing the attention toward the left visual hemifield with greater strength than the contralateral attentional vector.

Bottom Line: We applied this new state-dependency approach to investigate the cerebellar role in musical and spatial information processing, given that a link between musical perception and visuo-spatial abilities and a clear cerebellar involvement in music perception and visuo-spatial tasks have been reported.Conversely, the anodal or sham pre-conditioning stimulations combined with either music and white noise conditioning listening did not modulate spatial attention.They propose that tcDCS in combination with music listening could act as a rehabilitative tool to improve cognitive functions in the presence of neglect or other spatial disorders.

View Article: PubMed Central - PubMed

Affiliation: Clinical and Behavioral Neurology Laboratory, Non-Invasive Brain Stimulation Unit, IRCCS "Santa Lucia" Foundation Rome, Italy ; Department of Psychology, "Sapienza" University of Rome Rome, Italy.

ABSTRACT
Non-invasive brain stimulation modulates cortical excitability depending on the initial activation state of the structure being stimulated. Combination of cognitive with neurophysiological stimulations has been successfully employed to modulate responses of specific brain regions. The present research combined a neurophysiological pre-conditioning with a cognitive conditioning stimulation to modulate behavior. We applied this new state-dependency approach to investigate the cerebellar role in musical and spatial information processing, given that a link between musical perception and visuo-spatial abilities and a clear cerebellar involvement in music perception and visuo-spatial tasks have been reported. Cathodal, anodal or sham transcranial cerebellar Direct Current Stimulation (tcDCS) pre-conditioning was applied on the left cerebellar hemisphere followed by conditioning stimulation through music or white noise listening in a sample of healthy subjects performing a Line Bisection Task (LBT). The combination of the cathodal stimulation with music listening resulted in a marked attentional shift toward the right hemispace, compensating thus the natural leftward bias of the baseline condition (pseudoneglect). Conversely, the anodal or sham pre-conditioning stimulations combined with either music and white noise conditioning listening did not modulate spatial attention. The efficacy of the combined stimulation (cathodal pre-conditioning and music conditioning) and the absence of any effect of the single stimulations provide a strong support to the state-dependency theory. They propose that tcDCS in combination with music listening could act as a rehabilitative tool to improve cognitive functions in the presence of neglect or other spatial disorders.

No MeSH data available.


Related in: MedlinePlus