Limits...
Secretory function in subplate neurons during cortical development.

Kondo S, Al-Hasani H, Hoerder-Suabedissen A, Wang WZ, Molnár Z - Front Neurosci (2015)

Bottom Line: By comparing gene expression between subplate and layer 6, we found that several genes encoding secreted proteins are highly expressed in subplate neurons.One of these secreted proteins, neuroserpin, encoded by the serpini1 gene, is localized to the ER in subplate cells.We propose that subplate might influence cortical circuit formation through a transient secretory function.

View Article: PubMed Central - PubMed

Affiliation: Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK.

ABSTRACT
Subplate cells are among the first generated neurons in the mammalian cerebral cortex and have been implicated in the establishment of cortical wiring. In rodents some subplate neurons persist into adulthood. Here we would like to highlight several converging findings which suggest a novel secretory function of subplate neurons during cortical development. Throughout the postnatal period in rodents, subplate neurons have highly developed rough endoplasmic reticulum (ER) and are under an ER stress condition. By comparing gene expression between subplate and layer 6, we found that several genes encoding secreted proteins are highly expressed in subplate neurons. One of these secreted proteins, neuroserpin, encoded by the serpini1 gene, is localized to the ER in subplate cells. We propose that subplate might influence cortical circuit formation through a transient secretory function.

No MeSH data available.


Related in: MedlinePlus

Subplate neurons have a well-developed rough endoplasmic reticulum. Transmission electron microscopic image of a subplate neuron of P8 rat brains (A,B). Note, the large amounts of rough ER (rER) in the subplate neurons. The chromatin in the nucleus (N) is not strongly condensed. For comparison, see the transmission electron microscopic image of a neuron in striatum of P8 rat brains (C), in which cells display much less rER. Scale bars: 2 μm (A), 1 μm (B,C).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4374456&req=5

Figure 2: Subplate neurons have a well-developed rough endoplasmic reticulum. Transmission electron microscopic image of a subplate neuron of P8 rat brains (A,B). Note, the large amounts of rough ER (rER) in the subplate neurons. The chromatin in the nucleus (N) is not strongly condensed. For comparison, see the transmission electron microscopic image of a neuron in striatum of P8 rat brains (C), in which cells display much less rER. Scale bars: 2 μm (A), 1 μm (B,C).

Mentions: To confirm directly whether subplate neurons in postnatal rodents have well developed rough ER, we carried out ultrastructural analysis of P8 rat brains using electron microscopy (Figure 2). Electron micrographs of subplate neurons showed an abundance of rough ER (Figures 2A,B) compared to either neurons in the striatum (Figure 2C) or pyramidal cells in layer 5 during postnatal period (Miller and Peters, 1981) or in adult (Parnavelas and Lieberman, 1979). The chromatin in the nucleus of subplate neurons is not strongly aggregated at P8, suggesting that high levels of mRNAs are being produced. The presence of a well-developed rough ER in subplate neurons during the postnatal period suggests an active protein production function for these cells.


Secretory function in subplate neurons during cortical development.

Kondo S, Al-Hasani H, Hoerder-Suabedissen A, Wang WZ, Molnár Z - Front Neurosci (2015)

Subplate neurons have a well-developed rough endoplasmic reticulum. Transmission electron microscopic image of a subplate neuron of P8 rat brains (A,B). Note, the large amounts of rough ER (rER) in the subplate neurons. The chromatin in the nucleus (N) is not strongly condensed. For comparison, see the transmission electron microscopic image of a neuron in striatum of P8 rat brains (C), in which cells display much less rER. Scale bars: 2 μm (A), 1 μm (B,C).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4374456&req=5

Figure 2: Subplate neurons have a well-developed rough endoplasmic reticulum. Transmission electron microscopic image of a subplate neuron of P8 rat brains (A,B). Note, the large amounts of rough ER (rER) in the subplate neurons. The chromatin in the nucleus (N) is not strongly condensed. For comparison, see the transmission electron microscopic image of a neuron in striatum of P8 rat brains (C), in which cells display much less rER. Scale bars: 2 μm (A), 1 μm (B,C).
Mentions: To confirm directly whether subplate neurons in postnatal rodents have well developed rough ER, we carried out ultrastructural analysis of P8 rat brains using electron microscopy (Figure 2). Electron micrographs of subplate neurons showed an abundance of rough ER (Figures 2A,B) compared to either neurons in the striatum (Figure 2C) or pyramidal cells in layer 5 during postnatal period (Miller and Peters, 1981) or in adult (Parnavelas and Lieberman, 1979). The chromatin in the nucleus of subplate neurons is not strongly aggregated at P8, suggesting that high levels of mRNAs are being produced. The presence of a well-developed rough ER in subplate neurons during the postnatal period suggests an active protein production function for these cells.

Bottom Line: By comparing gene expression between subplate and layer 6, we found that several genes encoding secreted proteins are highly expressed in subplate neurons.One of these secreted proteins, neuroserpin, encoded by the serpini1 gene, is localized to the ER in subplate cells.We propose that subplate might influence cortical circuit formation through a transient secretory function.

View Article: PubMed Central - PubMed

Affiliation: Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK.

ABSTRACT
Subplate cells are among the first generated neurons in the mammalian cerebral cortex and have been implicated in the establishment of cortical wiring. In rodents some subplate neurons persist into adulthood. Here we would like to highlight several converging findings which suggest a novel secretory function of subplate neurons during cortical development. Throughout the postnatal period in rodents, subplate neurons have highly developed rough endoplasmic reticulum (ER) and are under an ER stress condition. By comparing gene expression between subplate and layer 6, we found that several genes encoding secreted proteins are highly expressed in subplate neurons. One of these secreted proteins, neuroserpin, encoded by the serpini1 gene, is localized to the ER in subplate cells. We propose that subplate might influence cortical circuit formation through a transient secretory function.

No MeSH data available.


Related in: MedlinePlus