Limits...
Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40.

Zischka M, Künne CT, Blom J, Wobser D, Sakιnç T, Schmidt-Hohagen K, Dabrowski PW, Nitsche A, Hübner J, Hain T, Chakraborty T, Linke B, Goesmann A, Voget S, Daniel R, Schomburg D, Hauck R, Hafez HM, Tielen P, Jahn D, Solheim M, Sadowy E, Larsen J, Jensen LB, Ruiz-Garbajosa P, Quiñones Pérez D, Mikalsen T, Bender J, Steglich M, Nübel U, Witte W, Werner G - BMC Genomics (2015)

Bottom Line: Distribution of known and putative virulence-associated genes did not differentiate between ST40 strains from a commensal and clinical background or an animal or human source.D32 generally showed a greater capacity of adherence to human cell lines and an increased pathogenic potential in various animal models in combination with an even faster growth in vivo (not in vitro).Molecular, genomic and phenotypic analysis of representative isolates of a major clone of E. faecalis MLST ST40 revealed new insights into the microbiology of a commensal bacterium which can turn into a conditional pathogen.

View Article: PubMed Central - PubMed

Affiliation: Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Burgstr. 37, D-38855, Wernigerode, Germany. melanie.zischka@googlemail.com.

ABSTRACT

Background: Enterococcus faecalis is a multifaceted microorganism known to act as a beneficial intestinal commensal bacterium. It is also a dreaded nosocomial pathogen causing life-threatening infections in hospitalised patients. Isolates of a distinct MLST type ST40 represent the most frequent strain type of this species, distributed worldwide and originating from various sources (animal, human, environmental) and different conditions (colonisation/infection). Since enterococci are known to be highly recombinogenic we determined to analyse the microevolution and niche adaptation of this highly distributed clonal type.

Results: We compared a set of 42 ST40 isolates by assessing key molecular determinants, performing whole genome sequencing (WGS) and a number of phenotypic assays including resistance profiling, formation of biofilm and utilisation of carbon sources. We generated the first circular closed reference genome of an E. faecalis isolate D32 of animal origin and compared it with the genomes of other reference strains. D32 was used as a template for detailed WGS comparisons of high-quality draft genomes of 14 ST40 isolates. Genomic and phylogenetic analyses suggest a high level of similarity regarding the core genome, also demonstrated by similar carbon utilisation patterns. Distribution of known and putative virulence-associated genes did not differentiate between ST40 strains from a commensal and clinical background or an animal or human source. Further analyses of mobile genetic elements (MGE) revealed genomic diversity owed to: (1) a modularly structured pathogenicity island; (2) a site-specifically integrated and previously unknown genomic island of 138 kb in two strains putatively involved in exopolysaccharide synthesis; and (3) isolate-specific plasmid and phage patterns. Moreover, we used different cell-biological and animal experiments to compare the isolate D32 with a closely related ST40 endocarditis isolate whose draft genome sequence was also generated. D32 generally showed a greater capacity of adherence to human cell lines and an increased pathogenic potential in various animal models in combination with an even faster growth in vivo (not in vitro).

Conclusion: Molecular, genomic and phenotypic analysis of representative isolates of a major clone of E. faecalis MLST ST40 revealed new insights into the microbiology of a commensal bacterium which can turn into a conditional pathogen.

Show MeSH

Related in: MedlinePlus

Pathogenicity ofE. faecalisD32 and UW7709 in aGalleria mellonellamodel. Death rates of G. mellonella larvae after injection with E. faecalis strains D32 (real infectious dose: 1.7 × 105 CFU per larvae) and UW7709 (real infectious dose: 2.8 × 105 CFU per larvae), respectively. PBS injection served as a negative control. One representative experiment of three independent experiments is shown. Data are displayed by as Kaplan-Meier plot survival curves. Statistical significance (p < 0.05) was determined by the Log-rank (Mantel-Cox) test.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4374294&req=5

Fig7: Pathogenicity ofE. faecalisD32 and UW7709 in aGalleria mellonellamodel. Death rates of G. mellonella larvae after injection with E. faecalis strains D32 (real infectious dose: 1.7 × 105 CFU per larvae) and UW7709 (real infectious dose: 2.8 × 105 CFU per larvae), respectively. PBS injection served as a negative control. One representative experiment of three independent experiments is shown. Data are displayed by as Kaplan-Meier plot survival curves. Statistical significance (p < 0.05) was determined by the Log-rank (Mantel-Cox) test.

Mentions: The insect larva G. mellonella is an alternative model for the study of bacteria-host interactions, and shows a complex immune reaction consisting of both cellular and humoral responses. Analysis of pathogenicity of isolates D32 and UW7709 in this model showed that D32 was more rapidly lethal for G. mellonella and pathogenicity of D32 was generally increased in comparison with UW7709 (Figure 7).Figure 7


Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40.

Zischka M, Künne CT, Blom J, Wobser D, Sakιnç T, Schmidt-Hohagen K, Dabrowski PW, Nitsche A, Hübner J, Hain T, Chakraborty T, Linke B, Goesmann A, Voget S, Daniel R, Schomburg D, Hauck R, Hafez HM, Tielen P, Jahn D, Solheim M, Sadowy E, Larsen J, Jensen LB, Ruiz-Garbajosa P, Quiñones Pérez D, Mikalsen T, Bender J, Steglich M, Nübel U, Witte W, Werner G - BMC Genomics (2015)

Pathogenicity ofE. faecalisD32 and UW7709 in aGalleria mellonellamodel. Death rates of G. mellonella larvae after injection with E. faecalis strains D32 (real infectious dose: 1.7 × 105 CFU per larvae) and UW7709 (real infectious dose: 2.8 × 105 CFU per larvae), respectively. PBS injection served as a negative control. One representative experiment of three independent experiments is shown. Data are displayed by as Kaplan-Meier plot survival curves. Statistical significance (p < 0.05) was determined by the Log-rank (Mantel-Cox) test.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4374294&req=5

Fig7: Pathogenicity ofE. faecalisD32 and UW7709 in aGalleria mellonellamodel. Death rates of G. mellonella larvae after injection with E. faecalis strains D32 (real infectious dose: 1.7 × 105 CFU per larvae) and UW7709 (real infectious dose: 2.8 × 105 CFU per larvae), respectively. PBS injection served as a negative control. One representative experiment of three independent experiments is shown. Data are displayed by as Kaplan-Meier plot survival curves. Statistical significance (p < 0.05) was determined by the Log-rank (Mantel-Cox) test.
Mentions: The insect larva G. mellonella is an alternative model for the study of bacteria-host interactions, and shows a complex immune reaction consisting of both cellular and humoral responses. Analysis of pathogenicity of isolates D32 and UW7709 in this model showed that D32 was more rapidly lethal for G. mellonella and pathogenicity of D32 was generally increased in comparison with UW7709 (Figure 7).Figure 7

Bottom Line: Distribution of known and putative virulence-associated genes did not differentiate between ST40 strains from a commensal and clinical background or an animal or human source.D32 generally showed a greater capacity of adherence to human cell lines and an increased pathogenic potential in various animal models in combination with an even faster growth in vivo (not in vitro).Molecular, genomic and phenotypic analysis of representative isolates of a major clone of E. faecalis MLST ST40 revealed new insights into the microbiology of a commensal bacterium which can turn into a conditional pathogen.

View Article: PubMed Central - PubMed

Affiliation: Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Burgstr. 37, D-38855, Wernigerode, Germany. melanie.zischka@googlemail.com.

ABSTRACT

Background: Enterococcus faecalis is a multifaceted microorganism known to act as a beneficial intestinal commensal bacterium. It is also a dreaded nosocomial pathogen causing life-threatening infections in hospitalised patients. Isolates of a distinct MLST type ST40 represent the most frequent strain type of this species, distributed worldwide and originating from various sources (animal, human, environmental) and different conditions (colonisation/infection). Since enterococci are known to be highly recombinogenic we determined to analyse the microevolution and niche adaptation of this highly distributed clonal type.

Results: We compared a set of 42 ST40 isolates by assessing key molecular determinants, performing whole genome sequencing (WGS) and a number of phenotypic assays including resistance profiling, formation of biofilm and utilisation of carbon sources. We generated the first circular closed reference genome of an E. faecalis isolate D32 of animal origin and compared it with the genomes of other reference strains. D32 was used as a template for detailed WGS comparisons of high-quality draft genomes of 14 ST40 isolates. Genomic and phylogenetic analyses suggest a high level of similarity regarding the core genome, also demonstrated by similar carbon utilisation patterns. Distribution of known and putative virulence-associated genes did not differentiate between ST40 strains from a commensal and clinical background or an animal or human source. Further analyses of mobile genetic elements (MGE) revealed genomic diversity owed to: (1) a modularly structured pathogenicity island; (2) a site-specifically integrated and previously unknown genomic island of 138 kb in two strains putatively involved in exopolysaccharide synthesis; and (3) isolate-specific plasmid and phage patterns. Moreover, we used different cell-biological and animal experiments to compare the isolate D32 with a closely related ST40 endocarditis isolate whose draft genome sequence was also generated. D32 generally showed a greater capacity of adherence to human cell lines and an increased pathogenic potential in various animal models in combination with an even faster growth in vivo (not in vitro).

Conclusion: Molecular, genomic and phenotypic analysis of representative isolates of a major clone of E. faecalis MLST ST40 revealed new insights into the microbiology of a commensal bacterium which can turn into a conditional pathogen.

Show MeSH
Related in: MedlinePlus