Limits...
Laparoscopic management of recurrent ureteropelvic junction obstruction following pyeloplasty.

Abraham GP, Siddaiah AT, Ramaswami K, George D, Das K - Urol Ann (2015 Apr-Jun)

Bottom Line: Transperitoneal approach was followed to repair the recurrent UPJO.Operative, postoperative, and follow-up functional details were recorded.Mean operative time was 191.25 ± 24.99 min, mean duration of hospital stay was 3.2 ± 0.45 days and mean follow-up duration was 29.9 ± 18.5 months with success rate of 93.3%.

View Article: PubMed Central - PubMed

Affiliation: Department of Urology, Lakeshore Hospital and Research Centre, Kochi, Kerala, India.

ABSTRACT

Objective: The aim was to analyze the operative, postoperative and functional outcome of laparoscopic management of previously failed pyeloplasty and to compare operative and postoperative outcome with laparoscopic pyeloplasty for primary ureteropelvic junction obstruction (UPJO).

Materials and methods: All patients who underwent laparoscopic management for previously failed dismembered pyeloplasty were analyzed in this study. Detailed clinical and imaging evaluation was performed. Transperitoneal approach was followed to repair the recurrent UPJO. Operative, postoperative, and follow-up functional details were recorded. Operative and postoperative outcomes of laparoscopic redo pyeloplasty were compared with that of laparoscopic primary pyeloplasty.

Results: A total of 16 patients were managed with laparoscopic approach for previously failed pyeloplasty. Primary surgical approach for dismembered pyeloplasty was open in 11, laparoscopy in four patients and robotic assisted in one patient. Fifteen were treated with redo pyeloplasty and one with ureterocalicostomy. Mean operative time was 191.25 ± 24.99 min, mean duration of hospital stay was 3.2 ± 0.45 days and mean follow-up duration was 29.9 ± 18.5 months with success rate of 93.3%. Operative time was significantly prolonged with redo pyeloplasty group compared with primary pyeloplasty group (191.25 ± 24.99 vs. 145 ± 22.89, P = 0.0001).

Conclusion: Laparoscopic redo pyeloplasty is a viable option with a satisfactory outcome and less morbidity.

No MeSH data available.


Related in: MedlinePlus

Operative picture showing dense peripelvic fibrosis
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4374256&req=5

Figure 3: Operative picture showing dense peripelvic fibrosis

Mentions: The transperitoneal laparoscopic approach was utilized in all cases in the lateral decubitus. Pneumoperitoneum was achieved using open access. Standard four ports technique was followed. Colon was reflected from the lateral peritoneal attachment to expose the upper ureter and renal pelvis. Peripelvic fibrosis was gently released using blunt and sharp dissection without using electrocautery [Figure 3]. Normal ureter was identified, and dissection was carried out proximally towards renal pelvis. The lower pole crossing vessel was carefully dissected and preserved when found [Figure 4]. Ureter was disconnected distal to fibrotic segment and adequately spatulated on the lateral aspect. Grossly distended renal pelvis identified, and pyelotomy was performed. The most dependent part of the pelvis was anastomosed to apex of the spatulated ureter. Ureteropelvic anastomosis was completed with interrupted stitches using 4-0 polygalctin sutures over the double J stent [Figure 5]. Redundant pelvis was excised, followed by closure of the pelvis using continuous absorbable suture. In the presence of crossing vessel, ureteropelvic anastomosis was performed anterior to crossing vessel. The drain was placed, and port closure performed. The perurethral foley catheter was retained for 2 days. The double J stent was removed after 6 weeks.


Laparoscopic management of recurrent ureteropelvic junction obstruction following pyeloplasty.

Abraham GP, Siddaiah AT, Ramaswami K, George D, Das K - Urol Ann (2015 Apr-Jun)

Operative picture showing dense peripelvic fibrosis
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4374256&req=5

Figure 3: Operative picture showing dense peripelvic fibrosis
Mentions: The transperitoneal laparoscopic approach was utilized in all cases in the lateral decubitus. Pneumoperitoneum was achieved using open access. Standard four ports technique was followed. Colon was reflected from the lateral peritoneal attachment to expose the upper ureter and renal pelvis. Peripelvic fibrosis was gently released using blunt and sharp dissection without using electrocautery [Figure 3]. Normal ureter was identified, and dissection was carried out proximally towards renal pelvis. The lower pole crossing vessel was carefully dissected and preserved when found [Figure 4]. Ureter was disconnected distal to fibrotic segment and adequately spatulated on the lateral aspect. Grossly distended renal pelvis identified, and pyelotomy was performed. The most dependent part of the pelvis was anastomosed to apex of the spatulated ureter. Ureteropelvic anastomosis was completed with interrupted stitches using 4-0 polygalctin sutures over the double J stent [Figure 5]. Redundant pelvis was excised, followed by closure of the pelvis using continuous absorbable suture. In the presence of crossing vessel, ureteropelvic anastomosis was performed anterior to crossing vessel. The drain was placed, and port closure performed. The perurethral foley catheter was retained for 2 days. The double J stent was removed after 6 weeks.

Bottom Line: Transperitoneal approach was followed to repair the recurrent UPJO.Operative, postoperative, and follow-up functional details were recorded.Mean operative time was 191.25 ± 24.99 min, mean duration of hospital stay was 3.2 ± 0.45 days and mean follow-up duration was 29.9 ± 18.5 months with success rate of 93.3%.

View Article: PubMed Central - PubMed

Affiliation: Department of Urology, Lakeshore Hospital and Research Centre, Kochi, Kerala, India.

ABSTRACT

Objective: The aim was to analyze the operative, postoperative and functional outcome of laparoscopic management of previously failed pyeloplasty and to compare operative and postoperative outcome with laparoscopic pyeloplasty for primary ureteropelvic junction obstruction (UPJO).

Materials and methods: All patients who underwent laparoscopic management for previously failed dismembered pyeloplasty were analyzed in this study. Detailed clinical and imaging evaluation was performed. Transperitoneal approach was followed to repair the recurrent UPJO. Operative, postoperative, and follow-up functional details were recorded. Operative and postoperative outcomes of laparoscopic redo pyeloplasty were compared with that of laparoscopic primary pyeloplasty.

Results: A total of 16 patients were managed with laparoscopic approach for previously failed pyeloplasty. Primary surgical approach for dismembered pyeloplasty was open in 11, laparoscopy in four patients and robotic assisted in one patient. Fifteen were treated with redo pyeloplasty and one with ureterocalicostomy. Mean operative time was 191.25 ± 24.99 min, mean duration of hospital stay was 3.2 ± 0.45 days and mean follow-up duration was 29.9 ± 18.5 months with success rate of 93.3%. Operative time was significantly prolonged with redo pyeloplasty group compared with primary pyeloplasty group (191.25 ± 24.99 vs. 145 ± 22.89, P = 0.0001).

Conclusion: Laparoscopic redo pyeloplasty is a viable option with a satisfactory outcome and less morbidity.

No MeSH data available.


Related in: MedlinePlus