Limits...
Onion membrane: an efficient adsorbent for decoloring of wastewater.

Saber-Samandari S, Heydaripour J - J Environ Health Sci Eng (2015)

Bottom Line: Recently, researchers have tried to design synthetic materials by replicating natural materials as an adsorbent for removing various types of environmental pollutants, which have reached to the risky levels in nature for many countries in the world.In this research, the potential of onion membrane obtained from intermediate of onion shells for adsorption of methylene blue (MB) as a model cationic dye was exhibited.Evidently, the high efficiency and fast removal of methylene blue using onion membrane suggest the synthesis of polymer-based membranes with similar physical and chemical properties of onion membrane as a valuable and promising wastewater decoloring agents in water treatment.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Eastern Mediterranean University, TRNC via Mersin 10, Gazimagusa, Turkey.

ABSTRACT

Background: Recently, researchers have tried to design synthetic materials by replicating natural materials as an adsorbent for removing various types of environmental pollutants, which have reached to the risky levels in nature for many countries in the world. In this research, the potential of onion membrane obtained from intermediate of onion shells for adsorption of methylene blue (MB) as a model cationic dye was exhibited.

Methods: Before and after adsorption, the membrane was characterized by Fourier transform infrared spectroscopy (FTIR) and optical and scanning electron microscopy in order to prove its dye adsorption capability. The various experimental conditions affecting dye adsorption were explored to achieve maximum adsorption capacity.

Results: The dye adsorption capacity of the membrane was found to be 1.055 g.g(-1) with 84.45% efficiency after one hour and 1.202 g.g(-1) with 96.20% efficiency after eight hours in contact with the dye solution (0.3 g.L(-1)). Moreover, the kinetic, thermodynamic and adsorption isotherm models were employed to described the MB adsorption processes. The results show that the data for adsorption of MB onto the membrane fitted well with the Freundlich isotherm and pseudo-second-order kinetic models. In addition, the MB adsorption from room temperature to ~50°C is spontaneous and thermodynamically favorable.

Conclusions: Evidently, the high efficiency and fast removal of methylene blue using onion membrane suggest the synthesis of polymer-based membranes with similar physical and chemical properties of onion membrane as a valuable and promising wastewater decoloring agents in water treatment.

No MeSH data available.


Effect of adsorbent amount on the MB adsorption capacity (g.g−1) and efficiency (%) of membrane was plotted. In these experiments, the membrane adsorbed dye molecules from a 0.3 g.L−1 dye solution (250 ml) with a pH of 7.1 at 20°C for 8 hours.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4374185&req=5

Fig6: Effect of adsorbent amount on the MB adsorption capacity (g.g−1) and efficiency (%) of membrane was plotted. In these experiments, the membrane adsorbed dye molecules from a 0.3 g.L−1 dye solution (250 ml) with a pH of 7.1 at 20°C for 8 hours.

Mentions: In order to find the influence of various onion membrane amounts on their dye uptake capacity, an adsorption of 250 mL MB solutions (0.3 g.L−1) was examined using five different membrane doses ranging from 0.015 to 0.12 g for eight hours in the atmospheric conditions. As shown in Figure 6, with an increase in the amount of membrane to 0.12 g, the adsorption amount and consequently the adsorption efficiency increases to 98.83%. This is most likely due to an increase in the numbers of adsorption sites at the adsorbent surface area, and as a result, increases the removal efficiency of MB. However, it is reasonable to observe a decrease in adsorption capacity to 0.617 g.g−1 by increasing the adsorbent dose, which is a denominator of the fraction in Equation 3.Figure 6


Onion membrane: an efficient adsorbent for decoloring of wastewater.

Saber-Samandari S, Heydaripour J - J Environ Health Sci Eng (2015)

Effect of adsorbent amount on the MB adsorption capacity (g.g−1) and efficiency (%) of membrane was plotted. In these experiments, the membrane adsorbed dye molecules from a 0.3 g.L−1 dye solution (250 ml) with a pH of 7.1 at 20°C for 8 hours.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4374185&req=5

Fig6: Effect of adsorbent amount on the MB adsorption capacity (g.g−1) and efficiency (%) of membrane was plotted. In these experiments, the membrane adsorbed dye molecules from a 0.3 g.L−1 dye solution (250 ml) with a pH of 7.1 at 20°C for 8 hours.
Mentions: In order to find the influence of various onion membrane amounts on their dye uptake capacity, an adsorption of 250 mL MB solutions (0.3 g.L−1) was examined using five different membrane doses ranging from 0.015 to 0.12 g for eight hours in the atmospheric conditions. As shown in Figure 6, with an increase in the amount of membrane to 0.12 g, the adsorption amount and consequently the adsorption efficiency increases to 98.83%. This is most likely due to an increase in the numbers of adsorption sites at the adsorbent surface area, and as a result, increases the removal efficiency of MB. However, it is reasonable to observe a decrease in adsorption capacity to 0.617 g.g−1 by increasing the adsorbent dose, which is a denominator of the fraction in Equation 3.Figure 6

Bottom Line: Recently, researchers have tried to design synthetic materials by replicating natural materials as an adsorbent for removing various types of environmental pollutants, which have reached to the risky levels in nature for many countries in the world.In this research, the potential of onion membrane obtained from intermediate of onion shells for adsorption of methylene blue (MB) as a model cationic dye was exhibited.Evidently, the high efficiency and fast removal of methylene blue using onion membrane suggest the synthesis of polymer-based membranes with similar physical and chemical properties of onion membrane as a valuable and promising wastewater decoloring agents in water treatment.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Eastern Mediterranean University, TRNC via Mersin 10, Gazimagusa, Turkey.

ABSTRACT

Background: Recently, researchers have tried to design synthetic materials by replicating natural materials as an adsorbent for removing various types of environmental pollutants, which have reached to the risky levels in nature for many countries in the world. In this research, the potential of onion membrane obtained from intermediate of onion shells for adsorption of methylene blue (MB) as a model cationic dye was exhibited.

Methods: Before and after adsorption, the membrane was characterized by Fourier transform infrared spectroscopy (FTIR) and optical and scanning electron microscopy in order to prove its dye adsorption capability. The various experimental conditions affecting dye adsorption were explored to achieve maximum adsorption capacity.

Results: The dye adsorption capacity of the membrane was found to be 1.055 g.g(-1) with 84.45% efficiency after one hour and 1.202 g.g(-1) with 96.20% efficiency after eight hours in contact with the dye solution (0.3 g.L(-1)). Moreover, the kinetic, thermodynamic and adsorption isotherm models were employed to described the MB adsorption processes. The results show that the data for adsorption of MB onto the membrane fitted well with the Freundlich isotherm and pseudo-second-order kinetic models. In addition, the MB adsorption from room temperature to ~50°C is spontaneous and thermodynamically favorable.

Conclusions: Evidently, the high efficiency and fast removal of methylene blue using onion membrane suggest the synthesis of polymer-based membranes with similar physical and chemical properties of onion membrane as a valuable and promising wastewater decoloring agents in water treatment.

No MeSH data available.