Limits...
Onion membrane: an efficient adsorbent for decoloring of wastewater.

Saber-Samandari S, Heydaripour J - J Environ Health Sci Eng (2015)

Bottom Line: Recently, researchers have tried to design synthetic materials by replicating natural materials as an adsorbent for removing various types of environmental pollutants, which have reached to the risky levels in nature for many countries in the world.In this research, the potential of onion membrane obtained from intermediate of onion shells for adsorption of methylene blue (MB) as a model cationic dye was exhibited.Evidently, the high efficiency and fast removal of methylene blue using onion membrane suggest the synthesis of polymer-based membranes with similar physical and chemical properties of onion membrane as a valuable and promising wastewater decoloring agents in water treatment.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Eastern Mediterranean University, TRNC via Mersin 10, Gazimagusa, Turkey.

ABSTRACT

Background: Recently, researchers have tried to design synthetic materials by replicating natural materials as an adsorbent for removing various types of environmental pollutants, which have reached to the risky levels in nature for many countries in the world. In this research, the potential of onion membrane obtained from intermediate of onion shells for adsorption of methylene blue (MB) as a model cationic dye was exhibited.

Methods: Before and after adsorption, the membrane was characterized by Fourier transform infrared spectroscopy (FTIR) and optical and scanning electron microscopy in order to prove its dye adsorption capability. The various experimental conditions affecting dye adsorption were explored to achieve maximum adsorption capacity.

Results: The dye adsorption capacity of the membrane was found to be 1.055 g.g(-1) with 84.45% efficiency after one hour and 1.202 g.g(-1) with 96.20% efficiency after eight hours in contact with the dye solution (0.3 g.L(-1)). Moreover, the kinetic, thermodynamic and adsorption isotherm models were employed to described the MB adsorption processes. The results show that the data for adsorption of MB onto the membrane fitted well with the Freundlich isotherm and pseudo-second-order kinetic models. In addition, the MB adsorption from room temperature to ~50°C is spontaneous and thermodynamically favorable.

Conclusions: Evidently, the high efficiency and fast removal of methylene blue using onion membrane suggest the synthesis of polymer-based membranes with similar physical and chemical properties of onion membrane as a valuable and promising wastewater decoloring agents in water treatment.

No MeSH data available.


(a-d) Digital photographs, (e and f) SEM images, (g and h) optical microscope images, and (i) FTIR spectra of the onion membrane before and after dye adsorption are shown.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4374185&req=5

Fig2: (a-d) Digital photographs, (e and f) SEM images, (g and h) optical microscope images, and (i) FTIR spectra of the onion membrane before and after dye adsorption are shown.

Mentions: The MB adsorption capacity of the onion membranes was examined. Figure 2 shows the preparation of the membranes for MB adsorption (Figure 2a) and color changes in the membrane and dye solutions before and after adsorption during the first and eight hours of contact time (Figure 2b-d). In addition, the scanning electron microscopy (SEM) images of the membranes before and after adsorption of MB reflect their surface morphology (Figure 2e and f). As can be seen, before adsorption the membrane has a smooth surface, whereas it exhibits a coarse surface due to the presence of MB molecules after adsorption. In addition to this distinctive change in the surface of the membrane, the optical microscope images of the membrane before and after MB adsorption (Figure 2g and h) also revealed the adsorption of MB by the onion membrane.Figure 2


Onion membrane: an efficient adsorbent for decoloring of wastewater.

Saber-Samandari S, Heydaripour J - J Environ Health Sci Eng (2015)

(a-d) Digital photographs, (e and f) SEM images, (g and h) optical microscope images, and (i) FTIR spectra of the onion membrane before and after dye adsorption are shown.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4374185&req=5

Fig2: (a-d) Digital photographs, (e and f) SEM images, (g and h) optical microscope images, and (i) FTIR spectra of the onion membrane before and after dye adsorption are shown.
Mentions: The MB adsorption capacity of the onion membranes was examined. Figure 2 shows the preparation of the membranes for MB adsorption (Figure 2a) and color changes in the membrane and dye solutions before and after adsorption during the first and eight hours of contact time (Figure 2b-d). In addition, the scanning electron microscopy (SEM) images of the membranes before and after adsorption of MB reflect their surface morphology (Figure 2e and f). As can be seen, before adsorption the membrane has a smooth surface, whereas it exhibits a coarse surface due to the presence of MB molecules after adsorption. In addition to this distinctive change in the surface of the membrane, the optical microscope images of the membrane before and after MB adsorption (Figure 2g and h) also revealed the adsorption of MB by the onion membrane.Figure 2

Bottom Line: Recently, researchers have tried to design synthetic materials by replicating natural materials as an adsorbent for removing various types of environmental pollutants, which have reached to the risky levels in nature for many countries in the world.In this research, the potential of onion membrane obtained from intermediate of onion shells for adsorption of methylene blue (MB) as a model cationic dye was exhibited.Evidently, the high efficiency and fast removal of methylene blue using onion membrane suggest the synthesis of polymer-based membranes with similar physical and chemical properties of onion membrane as a valuable and promising wastewater decoloring agents in water treatment.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Eastern Mediterranean University, TRNC via Mersin 10, Gazimagusa, Turkey.

ABSTRACT

Background: Recently, researchers have tried to design synthetic materials by replicating natural materials as an adsorbent for removing various types of environmental pollutants, which have reached to the risky levels in nature for many countries in the world. In this research, the potential of onion membrane obtained from intermediate of onion shells for adsorption of methylene blue (MB) as a model cationic dye was exhibited.

Methods: Before and after adsorption, the membrane was characterized by Fourier transform infrared spectroscopy (FTIR) and optical and scanning electron microscopy in order to prove its dye adsorption capability. The various experimental conditions affecting dye adsorption were explored to achieve maximum adsorption capacity.

Results: The dye adsorption capacity of the membrane was found to be 1.055 g.g(-1) with 84.45% efficiency after one hour and 1.202 g.g(-1) with 96.20% efficiency after eight hours in contact with the dye solution (0.3 g.L(-1)). Moreover, the kinetic, thermodynamic and adsorption isotherm models were employed to described the MB adsorption processes. The results show that the data for adsorption of MB onto the membrane fitted well with the Freundlich isotherm and pseudo-second-order kinetic models. In addition, the MB adsorption from room temperature to ~50°C is spontaneous and thermodynamically favorable.

Conclusions: Evidently, the high efficiency and fast removal of methylene blue using onion membrane suggest the synthesis of polymer-based membranes with similar physical and chemical properties of onion membrane as a valuable and promising wastewater decoloring agents in water treatment.

No MeSH data available.