Limits...
Onion membrane: an efficient adsorbent for decoloring of wastewater.

Saber-Samandari S, Heydaripour J - J Environ Health Sci Eng (2015)

Bottom Line: Recently, researchers have tried to design synthetic materials by replicating natural materials as an adsorbent for removing various types of environmental pollutants, which have reached to the risky levels in nature for many countries in the world.In this research, the potential of onion membrane obtained from intermediate of onion shells for adsorption of methylene blue (MB) as a model cationic dye was exhibited.Evidently, the high efficiency and fast removal of methylene blue using onion membrane suggest the synthesis of polymer-based membranes with similar physical and chemical properties of onion membrane as a valuable and promising wastewater decoloring agents in water treatment.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Eastern Mediterranean University, TRNC via Mersin 10, Gazimagusa, Turkey.

ABSTRACT

Background: Recently, researchers have tried to design synthetic materials by replicating natural materials as an adsorbent for removing various types of environmental pollutants, which have reached to the risky levels in nature for many countries in the world. In this research, the potential of onion membrane obtained from intermediate of onion shells for adsorption of methylene blue (MB) as a model cationic dye was exhibited.

Methods: Before and after adsorption, the membrane was characterized by Fourier transform infrared spectroscopy (FTIR) and optical and scanning electron microscopy in order to prove its dye adsorption capability. The various experimental conditions affecting dye adsorption were explored to achieve maximum adsorption capacity.

Results: The dye adsorption capacity of the membrane was found to be 1.055 g.g(-1) with 84.45% efficiency after one hour and 1.202 g.g(-1) with 96.20% efficiency after eight hours in contact with the dye solution (0.3 g.L(-1)). Moreover, the kinetic, thermodynamic and adsorption isotherm models were employed to described the MB adsorption processes. The results show that the data for adsorption of MB onto the membrane fitted well with the Freundlich isotherm and pseudo-second-order kinetic models. In addition, the MB adsorption from room temperature to ~50°C is spontaneous and thermodynamically favorable.

Conclusions: Evidently, the high efficiency and fast removal of methylene blue using onion membrane suggest the synthesis of polymer-based membranes with similar physical and chemical properties of onion membrane as a valuable and promising wastewater decoloring agents in water treatment.

No MeSH data available.


Related in: MedlinePlus

Swelling behavior of the onion membrane was plotted as a function of time. In this experiment, 0.06 g of membrane was immersed in 250 mL of water with a pH of 7.1 at 20°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4374185&req=5

Fig1: Swelling behavior of the onion membrane was plotted as a function of time. In this experiment, 0.06 g of membrane was immersed in 250 mL of water with a pH of 7.1 at 20°C.

Mentions: The dynamic swelling behavior of the onion membranes over 10 hours (600 min) of immersion in water is shown in Figure 1. The swelling percentage increased up to 1,106% and then plateaued, with no big differences in water uptake with further increases in time. Initially, the water molecules were in contact with the membrane, then, they attacked and penetrated into the onion membrane cells. Obviously, this swelling system cannot continue forever, and by the increasing membrane-water interaction, the osmotic pressure difference might be reduced. Finally, the osmotic force at the equilibrium state was balanced with an elasticity force. It should be noted that the elasticity force prevents the deformation of the onion membrane cells by the stretching balance of the cells.Figure 1


Onion membrane: an efficient adsorbent for decoloring of wastewater.

Saber-Samandari S, Heydaripour J - J Environ Health Sci Eng (2015)

Swelling behavior of the onion membrane was plotted as a function of time. In this experiment, 0.06 g of membrane was immersed in 250 mL of water with a pH of 7.1 at 20°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4374185&req=5

Fig1: Swelling behavior of the onion membrane was plotted as a function of time. In this experiment, 0.06 g of membrane was immersed in 250 mL of water with a pH of 7.1 at 20°C.
Mentions: The dynamic swelling behavior of the onion membranes over 10 hours (600 min) of immersion in water is shown in Figure 1. The swelling percentage increased up to 1,106% and then plateaued, with no big differences in water uptake with further increases in time. Initially, the water molecules were in contact with the membrane, then, they attacked and penetrated into the onion membrane cells. Obviously, this swelling system cannot continue forever, and by the increasing membrane-water interaction, the osmotic pressure difference might be reduced. Finally, the osmotic force at the equilibrium state was balanced with an elasticity force. It should be noted that the elasticity force prevents the deformation of the onion membrane cells by the stretching balance of the cells.Figure 1

Bottom Line: Recently, researchers have tried to design synthetic materials by replicating natural materials as an adsorbent for removing various types of environmental pollutants, which have reached to the risky levels in nature for many countries in the world.In this research, the potential of onion membrane obtained from intermediate of onion shells for adsorption of methylene blue (MB) as a model cationic dye was exhibited.Evidently, the high efficiency and fast removal of methylene blue using onion membrane suggest the synthesis of polymer-based membranes with similar physical and chemical properties of onion membrane as a valuable and promising wastewater decoloring agents in water treatment.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Eastern Mediterranean University, TRNC via Mersin 10, Gazimagusa, Turkey.

ABSTRACT

Background: Recently, researchers have tried to design synthetic materials by replicating natural materials as an adsorbent for removing various types of environmental pollutants, which have reached to the risky levels in nature for many countries in the world. In this research, the potential of onion membrane obtained from intermediate of onion shells for adsorption of methylene blue (MB) as a model cationic dye was exhibited.

Methods: Before and after adsorption, the membrane was characterized by Fourier transform infrared spectroscopy (FTIR) and optical and scanning electron microscopy in order to prove its dye adsorption capability. The various experimental conditions affecting dye adsorption were explored to achieve maximum adsorption capacity.

Results: The dye adsorption capacity of the membrane was found to be 1.055 g.g(-1) with 84.45% efficiency after one hour and 1.202 g.g(-1) with 96.20% efficiency after eight hours in contact with the dye solution (0.3 g.L(-1)). Moreover, the kinetic, thermodynamic and adsorption isotherm models were employed to described the MB adsorption processes. The results show that the data for adsorption of MB onto the membrane fitted well with the Freundlich isotherm and pseudo-second-order kinetic models. In addition, the MB adsorption from room temperature to ~50°C is spontaneous and thermodynamically favorable.

Conclusions: Evidently, the high efficiency and fast removal of methylene blue using onion membrane suggest the synthesis of polymer-based membranes with similar physical and chemical properties of onion membrane as a valuable and promising wastewater decoloring agents in water treatment.

No MeSH data available.


Related in: MedlinePlus