Limits...
Cyclic growth of hierarchical structures in the aluminum-silicate system.

Dyonizy A, Kaminker V, Wieckowska J, Krzywicki T, Pantaleone J, Nowak P, Maselko J - J Syst Chem (2015)

Bottom Line: This system may provide a simple model system to search for universal laws governing the growth of complex hierarchical structures.Graphical AbstractSide view of the chemical structure made from many vertical cones to form a chemical metropolis.The tallest structure is 17 cm high.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Technical University, Wroclaw, Poland.

ABSTRACT

Background: Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the 'building blocks' on each level constructed from those on the lower level. To understand and model the processes that occur on many levels, and later construct them, is a difficult task. However interest in this subject is growing. It is now possible to study the spontaneous growth of hierarchical structures in simple, two component chemical systems.

Results: Aluminum-silicate systems have been observed to grow into structures that are approximately conical. These structures are composed of multiple smaller cones with several hierarchical levels of complexity. On the highest level the system resembles a metropolis, with a horizontal resource distribution network connecting vertical, conical structures. The cones are made from many smaller cones that are connected together forming a whole with unusual behavior. The growth is observed to switch periodically between the vertical and horizontal directions.

Conclusion: A structure grown in a dish is observed to have many similarities to other hierarchical systems such as biological organisms or cities. This system may provide a simple model system to search for universal laws governing the growth of complex hierarchical structures. Graphical AbstractSide view of the chemical structure made from many vertical cones to form a chemical metropolis. The tallest structure is 17 cm high.

No MeSH data available.


Related in: MedlinePlus

Photographs of the structure growing in Experiment B. Green food coloring was added to make the structure more visible. The top two rows show horizontal and vertical views at times 14, 36, 78 and 150 minutes (the height of the tallest tower at these times was 1.0, 6.8, 11.0 and 22.1 cm, respectively). The two pictures on the bottom are magnification of the overhead view at times 36 and 78 minutes. The arrows indicate one particular point on the structure.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4374113&req=5

Fig3: Photographs of the structure growing in Experiment B. Green food coloring was added to make the structure more visible. The top two rows show horizontal and vertical views at times 14, 36, 78 and 150 minutes (the height of the tallest tower at these times was 1.0, 6.8, 11.0 and 22.1 cm, respectively). The two pictures on the bottom are magnification of the overhead view at times 36 and 78 minutes. The arrows indicate one particular point on the structure.

Mentions: For Experiment B, where a much higher concentrations of the interior aluminum chloride solution is used, the structures produced are more complex. Figure 3 shows one such typical structure. Now the pumped aluminum chloride solution has a higher density than the exterior silicate solution (see Table 1) and so it spreads out on the bottom of the experimental container. The horizontal spreading eventually stops due to the formation of precipitate, but as pumping continues the internal pressure increases such that the membrane breaks in random places and horizontal spreading occurs again. The horizontal spreading occurs in such a way as to form many connected, “fingers” along the bottom of the experimental vessel. Inside these horizontal fingers a fluid distribution network forms from which vertical structures grow. Such distribution networks are commonly formed where fluids move through a medium that can be eroded [26]. Presumably the interior aluminum chloride solution is dissolving some of the interior precipitate to create channels inside the horizontal fingers. Such fluid distribution networks are common in biological systems, e.g. arteries in animals or branches in plants [26].Figure 3


Cyclic growth of hierarchical structures in the aluminum-silicate system.

Dyonizy A, Kaminker V, Wieckowska J, Krzywicki T, Pantaleone J, Nowak P, Maselko J - J Syst Chem (2015)

Photographs of the structure growing in Experiment B. Green food coloring was added to make the structure more visible. The top two rows show horizontal and vertical views at times 14, 36, 78 and 150 minutes (the height of the tallest tower at these times was 1.0, 6.8, 11.0 and 22.1 cm, respectively). The two pictures on the bottom are magnification of the overhead view at times 36 and 78 minutes. The arrows indicate one particular point on the structure.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4374113&req=5

Fig3: Photographs of the structure growing in Experiment B. Green food coloring was added to make the structure more visible. The top two rows show horizontal and vertical views at times 14, 36, 78 and 150 minutes (the height of the tallest tower at these times was 1.0, 6.8, 11.0 and 22.1 cm, respectively). The two pictures on the bottom are magnification of the overhead view at times 36 and 78 minutes. The arrows indicate one particular point on the structure.
Mentions: For Experiment B, where a much higher concentrations of the interior aluminum chloride solution is used, the structures produced are more complex. Figure 3 shows one such typical structure. Now the pumped aluminum chloride solution has a higher density than the exterior silicate solution (see Table 1) and so it spreads out on the bottom of the experimental container. The horizontal spreading eventually stops due to the formation of precipitate, but as pumping continues the internal pressure increases such that the membrane breaks in random places and horizontal spreading occurs again. The horizontal spreading occurs in such a way as to form many connected, “fingers” along the bottom of the experimental vessel. Inside these horizontal fingers a fluid distribution network forms from which vertical structures grow. Such distribution networks are commonly formed where fluids move through a medium that can be eroded [26]. Presumably the interior aluminum chloride solution is dissolving some of the interior precipitate to create channels inside the horizontal fingers. Such fluid distribution networks are common in biological systems, e.g. arteries in animals or branches in plants [26].Figure 3

Bottom Line: This system may provide a simple model system to search for universal laws governing the growth of complex hierarchical structures.Graphical AbstractSide view of the chemical structure made from many vertical cones to form a chemical metropolis.The tallest structure is 17 cm high.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Technical University, Wroclaw, Poland.

ABSTRACT

Background: Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the 'building blocks' on each level constructed from those on the lower level. To understand and model the processes that occur on many levels, and later construct them, is a difficult task. However interest in this subject is growing. It is now possible to study the spontaneous growth of hierarchical structures in simple, two component chemical systems.

Results: Aluminum-silicate systems have been observed to grow into structures that are approximately conical. These structures are composed of multiple smaller cones with several hierarchical levels of complexity. On the highest level the system resembles a metropolis, with a horizontal resource distribution network connecting vertical, conical structures. The cones are made from many smaller cones that are connected together forming a whole with unusual behavior. The growth is observed to switch periodically between the vertical and horizontal directions.

Conclusion: A structure grown in a dish is observed to have many similarities to other hierarchical systems such as biological organisms or cities. This system may provide a simple model system to search for universal laws governing the growth of complex hierarchical structures. Graphical AbstractSide view of the chemical structure made from many vertical cones to form a chemical metropolis. The tallest structure is 17 cm high.

No MeSH data available.


Related in: MedlinePlus